ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfom3 GIF version

Theorem dfom3 4683
Description: Alias for df-iom 4682. Use it instead of df-iom 4682 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
StepHypRef Expression
1 df-iom 4682 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  {cab 2215  wral 2508  c0 3491   cint 3922  suc csuc 4455  ωcom 4681
This theorem depends on definitions:  df-iom 4682
This theorem is referenced by:  omex  4684  peano1  4685  peano2  4686  peano5  4689  bj-dfom  16254
  Copyright terms: Public domain W3C validator