Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfom3 | GIF version |
Description: Alias for df-iom 4568. Use it instead of df-iom 4568 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
dfom3 | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iom 4568 | 1 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∅c0 3409 ∩ cint 3824 suc csuc 4343 ωcom 4567 |
This theorem depends on definitions: df-iom 4568 |
This theorem is referenced by: omex 4570 peano1 4571 peano2 4572 peano5 4575 bj-dfom 13825 |
Copyright terms: Public domain | W3C validator |