Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfom3 | GIF version |
Description: Alias for df-iom 4575. Use it instead of df-iom 4575 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
dfom3 | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iom 4575 | 1 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∅c0 3414 ∩ cint 3831 suc csuc 4350 ωcom 4574 |
This theorem depends on definitions: df-iom 4575 |
This theorem is referenced by: omex 4577 peano1 4578 peano2 4579 peano5 4582 bj-dfom 13968 |
Copyright terms: Public domain | W3C validator |