ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfom3 GIF version

Theorem dfom3 4397
Description: Alias for df-iom 4396. Use it instead of df-iom 4396 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
StepHypRef Expression
1 df-iom 4396 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wcel 1438  {cab 2074  wral 2359  c0 3284   cint 3683  suc csuc 4183  ωcom 4395
This theorem depends on definitions:  df-iom 4396
This theorem is referenced by:  omex  4398  peano1  4399  peano2  4400  peano5  4403  bj-dfom  11472
  Copyright terms: Public domain W3C validator