| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfom3 | GIF version | ||
| Description: Alias for df-iom 4637. Use it instead of df-iom 4637 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| dfom3 | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iom 4637 | 1 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 ∅c0 3459 ∩ cint 3884 suc csuc 4410 ωcom 4636 |
| This theorem depends on definitions: df-iom 4637 |
| This theorem is referenced by: omex 4639 peano1 4640 peano2 4641 peano5 4644 bj-dfom 15733 |
| Copyright terms: Public domain | W3C validator |