| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfom3 | GIF version | ||
| Description: Alias for df-iom 4647. Use it instead of df-iom 4647 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| dfom3 | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iom 4647 | 1 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∅c0 3464 ∩ cint 3891 suc csuc 4420 ωcom 4646 |
| This theorem depends on definitions: df-iom 4647 |
| This theorem is referenced by: omex 4649 peano1 4650 peano2 4651 peano5 4654 bj-dfom 16007 |
| Copyright terms: Public domain | W3C validator |