ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfom3 GIF version

Theorem dfom3 4464
Description: Alias for df-iom 4463. Use it instead of df-iom 4463 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
StepHypRef Expression
1 df-iom 4463 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1312  wcel 1461  {cab 2099  wral 2388  c0 3327   cint 3735  suc csuc 4245  ωcom 4462
This theorem depends on definitions:  df-iom 4463
This theorem is referenced by:  omex  4465  peano1  4466  peano2  4467  peano5  4470  bj-dfom  12814
  Copyright terms: Public domain W3C validator