ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfom3 GIF version

Theorem dfom3 4592
Description: Alias for df-iom 4591. Use it instead of df-iom 4591 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
StepHypRef Expression
1 df-iom 4591 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wcel 2148  {cab 2163  wral 2455  c0 3423   cint 3845  suc csuc 4366  ωcom 4590
This theorem depends on definitions:  df-iom 4591
This theorem is referenced by:  omex  4593  peano1  4594  peano2  4595  peano5  4598  bj-dfom  14688
  Copyright terms: Public domain W3C validator