| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfom3 | GIF version | ||
| Description: Alias for df-iom 4627. Use it instead of df-iom 4627 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| dfom3 | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iom 4627 | 1 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∅c0 3450 ∩ cint 3874 suc csuc 4400 ωcom 4626 |
| This theorem depends on definitions: df-iom 4627 |
| This theorem is referenced by: omex 4629 peano1 4630 peano2 4631 peano5 4634 bj-dfom 15579 |
| Copyright terms: Public domain | W3C validator |