ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfom3 GIF version

Theorem dfom3 4625
Description: Alias for df-iom 4624. Use it instead of df-iom 4624 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
StepHypRef Expression
1 df-iom 4624 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  {cab 2179  wral 2472  c0 3447   cint 3871  suc csuc 4397  ωcom 4623
This theorem depends on definitions:  df-iom 4624
This theorem is referenced by:  omex  4626  peano1  4627  peano2  4628  peano5  4631  bj-dfom  15495
  Copyright terms: Public domain W3C validator