| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfom3 | GIF version | ||
| Description: Alias for df-iom 4682. Use it instead of df-iom 4682 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| dfom3 | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iom 4682 | 1 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∅c0 3491 ∩ cint 3922 suc csuc 4455 ωcom 4681 |
| This theorem depends on definitions: df-iom 4682 |
| This theorem is referenced by: omex 4684 peano1 4685 peano2 4686 peano5 4689 bj-dfom 16254 |
| Copyright terms: Public domain | W3C validator |