| Intuitionistic Logic Explorer Theorem List (p. 46 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sucel 4501* | Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
| ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) | ||
| Theorem | suc0 4502 | The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| ⊢ suc ∅ = {∅} | ||
| Theorem | sucprc 4503 | A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
| ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | ||
| Theorem | unisuc 4504 | A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) | ||
| Theorem | unisucg 4505 | A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | ||
| Theorem | sssucid 4506 | A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| ⊢ 𝐴 ⊆ suc 𝐴 | ||
| Theorem | sucidg 4507 | Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | ||
| Theorem | sucid 4508 | A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ suc 𝐴 | ||
| Theorem | nsuceq0g 4509 | No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) | ||
| Theorem | eqelsuc 4510 | A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| Theorem | iunsuc 4511* | Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) | ||
| Theorem | suctr 4512 | The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.) |
| ⊢ (Tr 𝐴 → Tr suc 𝐴) | ||
| Theorem | trsuc 4513 | A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | ||
| Theorem | trsucss 4514 | A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.) |
| ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | sucssel 4515 | A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | ||
| Theorem | orduniss 4516 | An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
| ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | ||
| Theorem | onordi 4517 | An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ Ord 𝐴 | ||
| Theorem | ontrci 4518 | An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ Tr 𝐴 | ||
| Theorem | oneli 4519 | A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) | ||
| Theorem | onelssi 4520 | A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) | ||
| Theorem | onelini 4521 | An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) | ||
| Theorem | oneluni 4522 | An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) | ||
| Theorem | onunisuci 4523 | An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ ∪ suc 𝐴 = 𝐴 | ||
| Axiom | ax-un 4524* |
Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory.
It states that a set 𝑦 exists that includes the union of a
given set
𝑥 i.e. the collection of all members of
the members of 𝑥. The
variant axun2 4526 states that the union itself exists. A
version with the
standard abbreviation for union is uniex2 4527. A version using class
notation is uniex 4528.
This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4205), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 266). The union of a class df-uni 3889 should not be confused with the union of two classes df-un 3201. Their relationship is shown in unipr 3902. (Contributed by NM, 23-Dec-1993.) |
| ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfun 4525* | Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axun2 4526* | A variant of the Axiom of Union ax-un 4524. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
| Theorem | uniex2 4527* | The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
| Theorem | uniex 4528 | The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2806), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
| Theorem | vuniex 4529 | The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) |
| ⊢ ∪ 𝑥 ∈ V | ||
| Theorem | uniexg 4530 | The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
| Theorem | uniexd 4531 | Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ V) | ||
| Theorem | unex 4532 | The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
| Theorem | unexb 4533 | Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | unexg 4534 | A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | tpexg 4535 | An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) | ||
| Theorem | unisn3 4536* | Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
| ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) | ||
| Theorem | abnexg 4537* | Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 6269. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 4539 and pwnex 4540 respectively, proved from abnex 4538, which is a consequence of abnexg 4537 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) | ||
| Theorem | abnex 4538* | Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4539 and pwnex 4540. See the comment of abnexg 4537. (Contributed by BJ, 2-May-2021.) |
| ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) | ||
| Theorem | snnex 4539* | The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
| ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | ||
| Theorem | pwnex 4540* | The class of all power sets is a proper class. See also snnex 4539. (Contributed by BJ, 2-May-2021.) |
| ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V | ||
| Theorem | opeluu 4541 | Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) | ||
| Theorem | uniuni 4542* | Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.) |
| ⊢ ∪ ∪ 𝐴 = ∪ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
| Theorem | eusv1 4543* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | ||
| Theorem | eusvnf 4544* | Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | ||
| Theorem | eusvnfb 4545* | Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | ||
| Theorem | eusv2i 4546* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) | ||
| Theorem | eusv2nf 4547* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) | ||
| Theorem | eusv2 4548* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) | ||
| Theorem | reusv1 4549* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | reusv3i 4550* | Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | ||
| Theorem | reusv3 4551* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 4549 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | alxfr 4552* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
| Theorem | ralxfrd 4553* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfrd 4554* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr2d 4555* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfr2d 4556* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr 4557* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | ralxfrALT 4558* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. This proof does not use ralxfrd 4553. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | rexxfr 4559* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | rabxfrd 4560* | Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜒. (Contributed by NM, 16-Jan-2012.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) | ||
| Theorem | rabxfr 4561* | Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜑. (Contributed by NM, 10-Jun-2005.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) | ||
| Theorem | reuhypd 4562* | A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
| Theorem | reuhyp 4563* | A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
| Theorem | uniexb 4564 | The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | ||
| Theorem | pwexb 4565 | The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | ||
| Theorem | elpwpwel 4566 | A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
| ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | ||
| Theorem | univ 4567 | The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
| ⊢ ∪ V = V | ||
| Theorem | eldifpw 4568 | Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) | ||
| Theorem | op1stb 4569 | Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 | ||
| Theorem | op1stbg 4570 | Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴) | ||
| Theorem | iunpw 4571* | An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥) | ||
| Theorem | ifelpwung 4572 | Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) | ||
| Theorem | ifelpwund 4573 | Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) | ||
| Theorem | ifelpwun 4574 | Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) | ||
| Theorem | ifexd 4575 | Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) | ||
| Theorem | ifexg 4576 | Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) | ||
| Theorem | ifex 4577 | Existence of the conditional operator (inference form). (Contributed by NM, 2-Sep-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ if(𝜑, 𝐴, 𝐵) ∈ V | ||
| Theorem | ordon 4578 | The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| ⊢ Ord On | ||
| Theorem | ssorduni 4579 | The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | ||
| Theorem | ssonuni 4580 | The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | ||
| Theorem | ssonunii 4581 | The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) | ||
| Theorem | onun2 4582 | The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | ||
| Theorem | onun2i 4583 | The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.) |
| ⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ On | ||
| Theorem | ordsson 4584 | Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) |
| ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | ||
| Theorem | onss 4585 | An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | ||
| Theorem | onuni 4586 | The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | ||
| Theorem | orduni 4587 | The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.) |
| ⊢ (Ord 𝐴 → Ord ∪ 𝐴) | ||
| Theorem | bm2.5ii 4588* | Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
| Theorem | sucexb 4589 | A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
| ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | ||
| Theorem | sucexg 4590 | The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | ||
| Theorem | sucex 4591 | The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ suc 𝐴 ∈ V | ||
| Theorem | ordsucim 4592 | The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.) |
| ⊢ (Ord 𝐴 → Ord suc 𝐴) | ||
| Theorem | onsuc 4593 | The successor of an ordinal number is an ordinal number. Closed form of onsuci 4608. Forward implication of onsucb 4595. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | ||
| Theorem | ordsucg 4594 | The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.) |
| ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) | ||
| Theorem | onsucb 4595 | A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4593. (Contributed by NM, 9-Sep-2003.) |
| ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | ||
| Theorem | ordsucss 4596 | The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | ||
| Theorem | ordelsuc 4597 | A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | ||
| Theorem | onsucssi 4598 | A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
| ⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) | ||
| Theorem | onsucmin 4599* | The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) | ||
| Theorem | onsucelsucr 4600 | Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4622. However, the converse does hold where 𝐵 is a natural number, as seen at nnsucelsuc 6645. (Contributed by Jim Kingdon, 17-Jul-2019.) |
| ⊢ (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |