HomeHome Intuitionistic Logic Explorer
Theorem List (p. 46 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4501-4600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremopeluu 4501 Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))
 
Theoremuniuni 4502* Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.)
𝐴 = {𝑥 ∣ ∃𝑦(𝑥 = 𝑦𝑦𝐴)}
 
Theoremeusv1 4503* Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.)
(∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
 
Theoremeusvnf 4504* Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.)
(∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
 
Theoremeusvnfb 4505* Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.)
(∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
 
Theoremeusv2i 4506* Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
(∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
 
Theoremeusv2nf 4507* Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.)
𝐴 ∈ V       (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
 
Theoremeusv2 4508* Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
𝐴 ∈ V       (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃!𝑦𝑥 𝑦 = 𝐴)
 
Theoremreusv1 4509* Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
(∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
 
Theoremreusv3i 4510* Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑧𝐶 = 𝐷)       (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
 
Theoremreusv3 4511* Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 4509 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑧𝐶 = 𝐷)       (∃𝑦𝐵 (𝜑𝐶𝐴) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
 
Theoremalxfr 4512* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
 
Theoremralxfrd 4513* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
 
Theoremrexxfrd 4514* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
 
Theoremralxfr2d 4515* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.)
((𝜑𝑦𝐶) → 𝐴𝑉)    &   (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
 
Theoremrexxfr2d 4516* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
((𝜑𝑦𝐶) → 𝐴𝑉)    &   (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
 
Theoremralxfr 4517* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
 
TheoremralxfrALT 4518* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. This proof does not use ralxfrd 4513. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
 
Theoremrexxfr 4519* Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓)
 
Theoremrabxfrd 4520* Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜒. (Contributed by NM, 16-Jan-2012.)
𝑦𝐵    &   𝑦𝐶    &   ((𝜑𝑦𝐷) → 𝐴𝐷)    &   (𝑥 = 𝐴 → (𝜓𝜒))    &   (𝑦 = 𝐵𝐴 = 𝐶)       ((𝜑𝐵𝐷) → (𝐶 ∈ {𝑥𝐷𝜓} ↔ 𝐵 ∈ {𝑦𝐷𝜒}))
 
Theoremrabxfr 4521* Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜑. (Contributed by NM, 10-Jun-2005.)
𝑦𝐵    &   𝑦𝐶    &   (𝑦𝐷𝐴𝐷)    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵𝐴 = 𝐶)       (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
 
Theoremreuhypd 4522* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
((𝜑𝑥𝐶) → 𝐵𝐶)    &   ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))       ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
 
Theoremreuhyp 4523* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
(𝑥𝐶𝐵𝐶)    &   ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))       (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
 
Theoremuniexb 4524 The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
(𝐴 ∈ V ↔ 𝐴 ∈ V)
 
Theorempwexb 4525 The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
(𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
 
Theoremelpwpwel 4526 A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
(𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
 
Theoremuniv 4527 The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
V = V
 
Theoremeldifpw 4528 Membership in a power class difference. (Contributed by NM, 25-Mar-2007.)
𝐶 ∈ V       ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → (𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵))
 
Theoremop1stb 4529 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
𝐴 ∈ V    &   𝐵 ∈ V        𝐴, 𝐵⟩ = 𝐴
 
Theoremop1stbg 4530 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)
 
Theoremiunpw 4531* An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
𝐴 ∈ V       (∃𝑥𝐴 𝑥 = 𝐴 ↔ 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
 
Theoremifelpwung 4532 Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
 
Theoremifelpwund 4533 Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
 
Theoremifelpwun 4534 Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
𝐴 ∈ V    &   𝐵 ∈ V       if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵)
 
Theoremifexd 4535 Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V)
 
Theoremifexg 4536 Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.)
((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V)
 
Theoremifex 4537 Existence of the conditional operator (inference form). (Contributed by NM, 2-Sep-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       if(𝜑, 𝐴, 𝐵) ∈ V
 
2.4.2  Ordinals (continued)
 
Theoremordon 4538 The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Ord On
 
Theoremssorduni 4539 The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
(𝐴 ⊆ On → Ord 𝐴)
 
Theoremssonuni 4540 The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
(𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
 
Theoremssonunii 4541 The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
𝐴 ∈ V       (𝐴 ⊆ On → 𝐴 ∈ On)
 
Theoremonun2 4542 The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
 
Theoremonun2i 4543 The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.)
𝐴 ∈ On    &   𝐵 ∈ On       (𝐴𝐵) ∈ On
 
Theoremordsson 4544 Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
(Ord 𝐴𝐴 ⊆ On)
 
Theoremonss 4545 An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.)
(𝐴 ∈ On → 𝐴 ⊆ On)
 
Theoremonuni 4546 The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
(𝐴 ∈ On → 𝐴 ∈ On)
 
Theoremorduni 4547 The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.)
(Ord 𝐴 → Ord 𝐴)
 
Theorembm2.5ii 4548* Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
𝐴 ∈ V       (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
 
Theoremsucexb 4549 A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
(𝐴 ∈ V ↔ suc 𝐴 ∈ V)
 
Theoremsucexg 4550 The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
(𝐴𝑉 → suc 𝐴 ∈ V)
 
Theoremsucex 4551 The successor of a set is a set. (Contributed by NM, 30-Aug-1993.)
𝐴 ∈ V       suc 𝐴 ∈ V
 
Theoremordsucim 4552 The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
(Ord 𝐴 → Ord suc 𝐴)
 
Theoremonsuc 4553 The successor of an ordinal number is an ordinal number. Closed form of onsuci 4568. Forward implication of onsucb 4555. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
(𝐴 ∈ On → suc 𝐴 ∈ On)
 
Theoremordsucg 4554 The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.)
(𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
 
Theoremonsucb 4555 A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4553. (Contributed by NM, 9-Sep-2003.)
(𝐴 ∈ On ↔ suc 𝐴 ∈ On)
 
Theoremordsucss 4556 The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
(Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
 
Theoremordelsuc 4557 A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
 
Theoremonsucssi 4558 A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
𝐴 ∈ On    &   𝐵 ∈ On       (𝐴𝐵 ↔ suc 𝐴𝐵)
 
Theoremonsucmin 4559* The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
(𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
 
Theoremonsucelsucr 4560 Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4582. However, the converse does hold where 𝐵 is a natural number, as seen at nnsucelsuc 6584. (Contributed by Jim Kingdon, 17-Jul-2019.)
(𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵𝐴𝐵))
 
Theoremonsucsssucr 4561 The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4579. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
 
Theoremsucunielr 4562 Successor and union. The converse (where 𝐵 is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4583. (Contributed by Jim Kingdon, 2-Aug-2019.)
(suc 𝐴𝐵𝐴 𝐵)
 
Theoremunon 4563 The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
On = On
 
Theoremonuniss2 4564* The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
(𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
 
Theoremlimon 4565 The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Lim On
 
Theoremordunisuc2r 4566* An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.)
(Ord 𝐴 → (∀𝑥𝐴 suc 𝑥𝐴𝐴 = 𝐴))
 
Theoremonssi 4567 An ordinal number is a subset of On. (Contributed by NM, 11-Aug-1994.)
𝐴 ∈ On       𝐴 ⊆ On
 
Theoremonsuci 4568 The successor of an ordinal number is an ordinal number. Inference associated with onsuc 4553 and onsucb 4555. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
𝐴 ∈ On       suc 𝐴 ∈ On
 
Theoremonintonm 4569* The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
 
Theoremonintrab2im 4570 An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
(∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
 
Theoremordtriexmidlem 4571 Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4573 or weak linearity in ordsoexmid 4614) with a proposition 𝜑. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
{𝑥 ∈ {∅} ∣ 𝜑} ∈ On
 
Theoremordtriexmidlem2 4572* Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4573 or weak linearity in ordsoexmid 4614) with a proposition 𝜑. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
 
Theoremordtriexmid 4573* Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Also see exmidontri 7358 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)       (𝜑 ∨ ¬ 𝜑)
 
Theoremontriexmidim 4574* Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4573. (Contributed by Jim Kingdon, 26-Aug-2024.)
(∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → DECID 𝜑)
 
Theoremordtri2orexmid 4575* Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 31-Jul-2019.)
𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)       (𝜑 ∨ ¬ 𝜑)
 
Theorem2ordpr 4576 Version of 2on 6518 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Ord {∅, {∅}}
 
Theoremontr2exmid 4577* An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.)
𝑥 ∈ On ∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)       (𝜑 ∨ ¬ 𝜑)
 
Theoremordtri2or2exmidlem 4578* A set which is 2o if 𝜑 or if ¬ 𝜑 is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.)
{𝑥 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
 
Theoremonsucsssucexmid 4579* The converse of onsucsssucr 4561 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦 → suc 𝑥 ⊆ suc 𝑦)       (𝜑 ∨ ¬ 𝜑)
 
Theoremonsucelsucexmidlem1 4580* Lemma for onsucelsucexmid 4582. (Contributed by Jim Kingdon, 2-Aug-2019.)
∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
 
Theoremonsucelsucexmidlem 4581* Lemma for onsucelsucexmid 4582. The set {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} appears as 𝐴 in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5942), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4571. (Contributed by Jim Kingdon, 2-Aug-2019.)
{𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
 
Theoremonsucelsucexmid 4582* The converse of onsucelsucr 4560 implies excluded middle. On the other hand, if 𝑦 is constrained to be a natural number, instead of an arbitrary ordinal, then the converse of onsucelsucr 4560 does hold, as seen at nnsucelsuc 6584. (Contributed by Jim Kingdon, 2-Aug-2019.)
𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦 → suc 𝑥 ∈ suc 𝑦)       (𝜑 ∨ ¬ 𝜑)
 
Theoremordsucunielexmid 4583* The converse of sucunielr 4562 (where 𝐵 is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)       (𝜑 ∨ ¬ 𝜑)
 
2.5  IZF Set Theory - add the Axiom of Set Induction
 
2.5.1  The ZF Axiom of Foundation would imply Excluded Middle
 
Theoremregexmidlemm 4584* Lemma for regexmid 4587. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}       𝑦 𝑦𝐴
 
Theoremregexmidlem1 4585* Lemma for regexmid 4587. If 𝐴 has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2019.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}       (∃𝑦(𝑦𝐴 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝐴)) → (𝜑 ∨ ¬ 𝜑))
 
Theoremreg2exmidlema 4586* Lemma for reg2exmid 4588. If 𝐴 has a minimal element (expressed by ), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}       (∃𝑢𝐴𝑣𝐴 𝑢𝑣 → (𝜑 ∨ ¬ 𝜑))
 
Theoremregexmid 4587* The axiom of foundation implies excluded middle.

By foundation (or regularity), we mean the principle that every inhabited set has an element which is minimal (when arranged by ). The statement of foundation here is taken from Metamath Proof Explorer's ax-reg, and is identical (modulo one unnecessary quantifier) to the statement of foundation in Theorem "Foundation implies instances of EM" of [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4589. (Contributed by Jim Kingdon, 3-Sep-2019.)

(∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))       (𝜑 ∨ ¬ 𝜑)
 
Theoremreg2exmid 4588* If any inhabited set has a minimal element (when expressed by ), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
𝑧(∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)       (𝜑 ∨ ¬ 𝜑)
 
2.5.2  Introduce the Axiom of Set Induction
 
Axiomax-setind 4589* Axiom of -Induction (also known as set induction). An axiom of Intuitionistic Zermelo-Fraenkel set theory. Axiom 9 of [Crosilla] p. "Axioms of CZF and IZF". This replaces the Axiom of Foundation (also called Regularity) from Zermelo-Fraenkel set theory.

For more on axioms which might be adopted which are incompatible with this axiom (that is, Non-wellfounded Set Theory but in the absence of excluded middle), see Chapter 20 of [AczelRathjen], p. 183. (Contributed by Jim Kingdon, 19-Oct-2018.)

(∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
 
Theoremsetindel 4590* -Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.)
(∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → 𝑆 = V)
 
Theoremsetind 4591* Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
(∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
 
Theoremsetind2 4592 Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
(𝒫 𝐴𝐴𝐴 = V)
 
Theoremelirr 4593 No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22.

The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4589, we could redefine Ord 𝐴 (df-iord 4417) to also require E Fr 𝐴 (df-frind 4383) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4594 (which under that definition would presumably not need ax-setind 4589 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4594. To encourage ordirr 4594 when possible, we mark this theorem as discouraged.

(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.)

¬ 𝐴𝐴
 
Theoremordirr 4594 Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4589. If in the definition of ordinals df-iord 4417, we also required that membership be well-founded on any ordinal (see df-frind 4383), then we could prove ordirr 4594 without ax-setind 4589. (Contributed by NM, 2-Jan-1994.)
(Ord 𝐴 → ¬ 𝐴𝐴)
 
Theoremonirri 4595 An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
𝐴 ∈ On        ¬ 𝐴𝐴
 
Theoremnordeq 4596 A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
 
Theoremordn2lp 4597 An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
(Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
 
Theoremorddisj 4598 An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
(Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
 
Theoremorddif 4599 Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
(Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
 
Theoremelirrv 4600 The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.)
¬ 𝑥𝑥
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >