Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-dfom | GIF version |
Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-dfom | ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfom3 4569 | . 2 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | |
2 | df-bj-ind 13809 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
3 | 2 | bicomi 131 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) ↔ Ind 𝑥) |
4 | 3 | abbii 2282 | . . 3 ⊢ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = {𝑥 ∣ Ind 𝑥} |
5 | 4 | inteqi 3828 | . 2 ⊢ ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = ∩ {𝑥 ∣ Ind 𝑥} |
6 | 1, 5 | eqtri 2186 | 1 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∅c0 3409 ∩ cint 3824 suc csuc 4343 ωcom 4567 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-int 3825 df-iom 4568 df-bj-ind 13809 |
This theorem is referenced by: bj-omind 13816 bj-omssind 13817 bj-ssom 13818 |
Copyright terms: Public domain | W3C validator |