| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-dfom | GIF version | ||
| Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-dfom | ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfom3 4683 | . 2 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | |
| 2 | df-bj-ind 16248 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 3 | 2 | bicomi 132 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) ↔ Ind 𝑥) |
| 4 | 3 | abbii 2345 | . . 3 ⊢ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = {𝑥 ∣ Ind 𝑥} |
| 5 | 4 | inteqi 3926 | . 2 ⊢ ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = ∩ {𝑥 ∣ Ind 𝑥} |
| 6 | 1, 5 | eqtri 2250 | 1 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∅c0 3491 ∩ cint 3922 suc csuc 4455 ωcom 4681 Ind wind 16247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-int 3923 df-iom 4682 df-bj-ind 16248 |
| This theorem is referenced by: bj-omind 16255 bj-omssind 16256 bj-ssom 16257 |
| Copyright terms: Public domain | W3C validator |