| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-dfom | GIF version | ||
| Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-dfom | ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfom3 4639 | . 2 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | |
| 2 | df-bj-ind 15796 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 3 | 2 | bicomi 132 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) ↔ Ind 𝑥) |
| 4 | 3 | abbii 2320 | . . 3 ⊢ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = {𝑥 ∣ Ind 𝑥} |
| 5 | 4 | inteqi 3888 | . 2 ⊢ ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = ∩ {𝑥 ∣ Ind 𝑥} |
| 6 | 1, 5 | eqtri 2225 | 1 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 ∅c0 3459 ∩ cint 3884 suc csuc 4411 ωcom 4637 Ind wind 15795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-int 3885 df-iom 4638 df-bj-ind 15796 |
| This theorem is referenced by: bj-omind 15803 bj-omssind 15804 bj-ssom 15805 |
| Copyright terms: Public domain | W3C validator |