| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-dfom | GIF version | ||
| Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-dfom | ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfom3 4648 | . 2 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | |
| 2 | df-bj-ind 16001 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 3 | 2 | bicomi 132 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) ↔ Ind 𝑥) |
| 4 | 3 | abbii 2322 | . . 3 ⊢ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = {𝑥 ∣ Ind 𝑥} |
| 5 | 4 | inteqi 3895 | . 2 ⊢ ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = ∩ {𝑥 ∣ Ind 𝑥} |
| 6 | 1, 5 | eqtri 2227 | 1 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∅c0 3464 ∩ cint 3891 suc csuc 4420 ωcom 4646 Ind wind 16000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-int 3892 df-iom 4647 df-bj-ind 16001 |
| This theorem is referenced by: bj-omind 16008 bj-omssind 16009 bj-ssom 16010 |
| Copyright terms: Public domain | W3C validator |