Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom GIF version

Theorem bj-dfom 15579
Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom ω = {𝑥 ∣ Ind 𝑥}

Proof of Theorem bj-dfom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfom3 4628 . 2 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
2 df-bj-ind 15573 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
32bicomi 132 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ Ind 𝑥)
43abbii 2312 . . 3 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
54inteqi 3878 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
61, 5eqtri 2217 1 ω = {𝑥 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  {cab 2182  wral 2475  c0 3450   cint 3874  suc csuc 4400  ωcom 4626  Ind wind 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-int 3875  df-iom 4627  df-bj-ind 15573
This theorem is referenced by:  bj-omind  15580  bj-omssind  15581  bj-ssom  15582
  Copyright terms: Public domain W3C validator