Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom GIF version

Theorem bj-dfom 16254
Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom ω = {𝑥 ∣ Ind 𝑥}

Proof of Theorem bj-dfom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfom3 4683 . 2 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
2 df-bj-ind 16248 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
32bicomi 132 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ Ind 𝑥)
43abbii 2345 . . 3 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
54inteqi 3926 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
61, 5eqtri 2250 1 ω = {𝑥 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  {cab 2215  wral 2508  c0 3491   cint 3922  suc csuc 4455  ωcom 4681  Ind wind 16247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-int 3923  df-iom 4682  df-bj-ind 16248
This theorem is referenced by:  bj-omind  16255  bj-omssind  16256  bj-ssom  16257
  Copyright terms: Public domain W3C validator