Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom GIF version

Theorem bj-dfom 16007
Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom ω = {𝑥 ∣ Ind 𝑥}

Proof of Theorem bj-dfom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfom3 4648 . 2 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
2 df-bj-ind 16001 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
32bicomi 132 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ Ind 𝑥)
43abbii 2322 . . 3 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
54inteqi 3895 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
61, 5eqtri 2227 1 ω = {𝑥 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  {cab 2192  wral 2485  c0 3464   cint 3891  suc csuc 4420  ωcom 4646  Ind wind 16000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-int 3892  df-iom 4647  df-bj-ind 16001
This theorem is referenced by:  bj-omind  16008  bj-omssind  16009  bj-ssom  16010
  Copyright terms: Public domain W3C validator