Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom GIF version

Theorem bj-dfom 15802
Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom ω = {𝑥 ∣ Ind 𝑥}

Proof of Theorem bj-dfom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfom3 4639 . 2 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
2 df-bj-ind 15796 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
32bicomi 132 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ Ind 𝑥)
43abbii 2320 . . 3 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
54inteqi 3888 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
61, 5eqtri 2225 1 ω = {𝑥 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  {cab 2190  wral 2483  c0 3459   cint 3884  suc csuc 4411  ωcom 4637  Ind wind 15795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-int 3885  df-iom 4638  df-bj-ind 15796
This theorem is referenced by:  bj-omind  15803  bj-omssind  15804  bj-ssom  15805
  Copyright terms: Public domain W3C validator