![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-dfom | GIF version |
Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-dfom | ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfom3 4624 | . 2 ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | |
2 | df-bj-ind 15419 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
3 | 2 | bicomi 132 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) ↔ Ind 𝑥) |
4 | 3 | abbii 2309 | . . 3 ⊢ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = {𝑥 ∣ Ind 𝑥} |
5 | 4 | inteqi 3874 | . 2 ⊢ ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} = ∩ {𝑥 ∣ Ind 𝑥} |
6 | 1, 5 | eqtri 2214 | 1 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∅c0 3446 ∩ cint 3870 suc csuc 4396 ωcom 4622 Ind wind 15418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-int 3871 df-iom 4623 df-bj-ind 15419 |
This theorem is referenced by: bj-omind 15426 bj-omssind 15427 bj-ssom 15428 |
Copyright terms: Public domain | W3C validator |