![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano1 | GIF version |
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
peano1 | ⊢ ∅ ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4131 | . . . 4 ⊢ ∅ ∈ V | |
2 | 1 | elint 3851 | . . 3 ⊢ (∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧)) |
3 | df-clab 2164 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | |
4 | simpl 109 | . . . . . 6 ⊢ ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑦) | |
5 | 4 | sbimi 1764 | . . . . 5 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦) |
6 | clelsb2 2283 | . . . . 5 ⊢ ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧) | |
7 | 5, 6 | sylib 122 | . . . 4 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑧) |
8 | 3, 7 | sylbi 121 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧) |
9 | 2, 8 | mpgbir 1453 | . 2 ⊢ ∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
10 | dfom3 4592 | . 2 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
11 | 9, 10 | eleqtrri 2253 | 1 ⊢ ∅ ∈ ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 [wsb 1762 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∅c0 3423 ∩ cint 3845 suc csuc 4366 ωcom 4590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4130 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-dif 3132 df-nul 3424 df-int 3846 df-iom 4591 |
This theorem is referenced by: peano5 4598 limom 4614 nnregexmid 4621 omsinds 4622 nnpredcl 4623 frec0g 6398 frecabcl 6400 frecrdg 6409 oa1suc 6468 nna0r 6479 nnm0r 6480 nnmcl 6482 nnmsucr 6489 1onn 6521 nnm1 6526 nnaordex 6529 nnawordex 6530 php5 6858 php5dom 6863 0fin 6884 findcard2 6889 findcard2s 6890 infm 6904 inffiexmid 6906 0ct 7106 ctmlemr 7107 ctssdclemn0 7109 ctssdc 7112 omct 7116 nninfisol 7131 fodjum 7144 fodju0 7145 ctssexmid 7148 nninfwlpoimlemg 7173 nninfwlpoimlemginf 7174 1lt2pi 7339 nq0m0r 7455 nq0a0 7456 prarloclem5 7499 frec2uzrand 10405 frecuzrdg0 10413 frecuzrdg0t 10422 frecfzennn 10426 0tonninf 10439 1tonninf 10440 hashinfom 10758 hashunlem 10784 hash1 10791 ennnfonelemj0 12402 ennnfonelem1 12408 ennnfonelemhf1o 12414 ennnfonelemhom 12416 fnpr2o 12758 fvpr0o 12760 xpscf 12766 bj-nn0suc 14719 bj-nn0sucALT 14733 012of 14748 2o01f 14749 pwle2 14751 pwf1oexmid 14752 subctctexmid 14753 peano3nninf 14759 nninfall 14761 nninfsellemdc 14762 nninfsellemeq 14766 nninffeq 14772 isomninnlem 14781 iswomninnlem 14800 ismkvnnlem 14803 |
Copyright terms: Public domain | W3C validator |