Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano1 | GIF version |
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
peano1 | ⊢ ∅ ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . . 4 ⊢ ∅ ∈ V | |
2 | 1 | elint 3830 | . . 3 ⊢ (∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧)) |
3 | df-clab 2152 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | |
4 | simpl 108 | . . . . . 6 ⊢ ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑦) | |
5 | 4 | sbimi 1752 | . . . . 5 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦) |
6 | clelsb2 2272 | . . . . 5 ⊢ ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧) | |
7 | 5, 6 | sylib 121 | . . . 4 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑧) |
8 | 3, 7 | sylbi 120 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧) |
9 | 2, 8 | mpgbir 1441 | . 2 ⊢ ∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
10 | dfom3 4569 | . 2 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
11 | 9, 10 | eleqtrri 2242 | 1 ⊢ ∅ ∈ ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 [wsb 1750 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∅c0 3409 ∩ cint 3824 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-nul 3410 df-int 3825 df-iom 4568 |
This theorem is referenced by: peano5 4575 limom 4591 nnregexmid 4598 omsinds 4599 nnpredcl 4600 frec0g 6365 frecabcl 6367 frecrdg 6376 oa1suc 6435 nna0r 6446 nnm0r 6447 nnmcl 6449 nnmsucr 6456 1onn 6488 nnm1 6492 nnaordex 6495 nnawordex 6496 php5 6824 php5dom 6829 0fin 6850 findcard2 6855 findcard2s 6856 infm 6870 inffiexmid 6872 0ct 7072 ctmlemr 7073 ctssdclemn0 7075 ctssdc 7078 omct 7082 nninfisol 7097 fodjum 7110 fodju0 7111 ctssexmid 7114 1lt2pi 7281 nq0m0r 7397 nq0a0 7398 prarloclem5 7441 frec2uzrand 10340 frecuzrdg0 10348 frecuzrdg0t 10357 frecfzennn 10361 0tonninf 10374 1tonninf 10375 hashinfom 10691 hashunlem 10717 hash1 10724 ennnfonelemj0 12334 ennnfonelem1 12340 ennnfonelemhf1o 12346 ennnfonelemhom 12348 bj-nn0suc 13846 bj-nn0sucALT 13860 012of 13875 2o01f 13876 pwle2 13878 pwf1oexmid 13879 subctctexmid 13881 peano3nninf 13887 nninfall 13889 nninfsellemdc 13890 nninfsellemeq 13894 nninffeq 13900 isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |