| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | 1 | elint 3928 | . . 3 ⊢ (∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧)) |
| 3 | df-clab 2216 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | |
| 4 | simpl 109 | . . . . . 6 ⊢ ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑦) | |
| 5 | 4 | sbimi 1810 | . . . . 5 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦) |
| 6 | clelsb2 2335 | . . . . 5 ⊢ ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧) | |
| 7 | 5, 6 | sylib 122 | . . . 4 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑧) |
| 8 | 3, 7 | sylbi 121 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧) |
| 9 | 2, 8 | mpgbir 1499 | . 2 ⊢ ∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
| 10 | dfom3 4683 | . 2 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 11 | 9, 10 | eleqtrri 2305 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 [wsb 1808 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∅c0 3491 ∩ cint 3922 suc csuc 4455 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-nul 3492 df-int 3923 df-iom 4682 |
| This theorem is referenced by: peano5 4689 limom 4705 nnregexmid 4712 omsinds 4713 nnpredcl 4714 frec0g 6541 frecabcl 6543 frecrdg 6552 oa1suc 6611 nna0r 6622 nnm0r 6623 nnmcl 6625 nnmsucr 6632 1onn 6664 nnm1 6669 nnaordex 6672 nnawordex 6673 php5 7015 php5dom 7020 0fin 7042 findcard2 7047 findcard2s 7048 infm 7062 inffiexmid 7064 0ct 7270 ctmlemr 7271 ctssdclemn0 7273 ctssdc 7276 omct 7280 nninfisol 7296 fodjum 7309 fodju0 7310 ctssexmid 7313 nninfwlpoimlemg 7338 nninfwlpoimlemginf 7339 1lt2pi 7523 nq0m0r 7639 nq0a0 7640 prarloclem5 7683 frec2uzrand 10622 frecuzrdg0 10630 frecuzrdg0t 10639 frecfzennn 10643 0tonninf 10657 1tonninf 10658 hashinfom 10995 hashunlem 11021 hash1 11028 nninfctlemfo 12556 ennnfonelemj0 12967 ennnfonelem1 12973 ennnfonelemhf1o 12979 ennnfonelemhom 12981 fnpr2o 13367 fvpr0o 13369 xpscf 13375 bj-nn0suc 16285 bj-nn0sucALT 16299 012of 16316 2o01f 16317 pwle2 16323 pwf1oexmid 16324 subctctexmid 16325 peano3nninf 16332 nninfall 16334 nninfsellemdc 16335 nninfsellemeq 16339 nninffeq 16345 nnnninfex 16347 isomninnlem 16357 iswomninnlem 16376 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |