| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4161 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | 1 | elint 3881 | . . 3 ⊢ (∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧)) |
| 3 | df-clab 2183 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | |
| 4 | simpl 109 | . . . . . 6 ⊢ ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑦) | |
| 5 | 4 | sbimi 1778 | . . . . 5 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦) |
| 6 | clelsb2 2302 | . . . . 5 ⊢ ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧) | |
| 7 | 5, 6 | sylib 122 | . . . 4 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑧) |
| 8 | 3, 7 | sylbi 121 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧) |
| 9 | 2, 8 | mpgbir 1467 | . 2 ⊢ ∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
| 10 | dfom3 4629 | . 2 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 11 | 9, 10 | eleqtrri 2272 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 [wsb 1776 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∅c0 3451 ∩ cint 3875 suc csuc 4401 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4160 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3452 df-int 3876 df-iom 4628 |
| This theorem is referenced by: peano5 4635 limom 4651 nnregexmid 4658 omsinds 4659 nnpredcl 4660 frec0g 6464 frecabcl 6466 frecrdg 6475 oa1suc 6534 nna0r 6545 nnm0r 6546 nnmcl 6548 nnmsucr 6555 1onn 6587 nnm1 6592 nnaordex 6595 nnawordex 6596 php5 6928 php5dom 6933 0fin 6954 findcard2 6959 findcard2s 6960 infm 6974 inffiexmid 6976 0ct 7182 ctmlemr 7183 ctssdclemn0 7185 ctssdc 7188 omct 7192 nninfisol 7208 fodjum 7221 fodju0 7222 ctssexmid 7225 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 1lt2pi 7426 nq0m0r 7542 nq0a0 7543 prarloclem5 7586 frec2uzrand 10516 frecuzrdg0 10524 frecuzrdg0t 10533 frecfzennn 10537 0tonninf 10551 1tonninf 10552 hashinfom 10889 hashunlem 10915 hash1 10922 nninfctlemfo 12234 ennnfonelemj0 12645 ennnfonelem1 12651 ennnfonelemhf1o 12657 ennnfonelemhom 12659 fnpr2o 13043 fvpr0o 13045 xpscf 13051 bj-nn0suc 15718 bj-nn0sucALT 15732 012of 15748 2o01f 15749 pwle2 15753 pwf1oexmid 15754 subctctexmid 15755 peano3nninf 15762 nninfall 15764 nninfsellemdc 15765 nninfsellemeq 15769 nninffeq 15775 nnnninfex 15777 isomninnlem 15787 iswomninnlem 15806 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |