| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4179 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | 1 | elint 3897 | . . 3 ⊢ (∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧)) |
| 3 | df-clab 2193 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | |
| 4 | simpl 109 | . . . . . 6 ⊢ ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑦) | |
| 5 | 4 | sbimi 1788 | . . . . 5 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦) |
| 6 | clelsb2 2312 | . . . . 5 ⊢ ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧) | |
| 7 | 5, 6 | sylib 122 | . . . 4 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑧) |
| 8 | 3, 7 | sylbi 121 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧) |
| 9 | 2, 8 | mpgbir 1477 | . 2 ⊢ ∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
| 10 | dfom3 4648 | . 2 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 11 | 9, 10 | eleqtrri 2282 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 [wsb 1786 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∅c0 3464 ∩ cint 3891 suc csuc 4420 ωcom 4646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-nul 3465 df-int 3892 df-iom 4647 |
| This theorem is referenced by: peano5 4654 limom 4670 nnregexmid 4677 omsinds 4678 nnpredcl 4679 frec0g 6496 frecabcl 6498 frecrdg 6507 oa1suc 6566 nna0r 6577 nnm0r 6578 nnmcl 6580 nnmsucr 6587 1onn 6619 nnm1 6624 nnaordex 6627 nnawordex 6628 php5 6970 php5dom 6975 0fin 6996 findcard2 7001 findcard2s 7002 infm 7016 inffiexmid 7018 0ct 7224 ctmlemr 7225 ctssdclemn0 7227 ctssdc 7230 omct 7234 nninfisol 7250 fodjum 7263 fodju0 7264 ctssexmid 7267 nninfwlpoimlemg 7292 nninfwlpoimlemginf 7293 1lt2pi 7473 nq0m0r 7589 nq0a0 7590 prarloclem5 7633 frec2uzrand 10572 frecuzrdg0 10580 frecuzrdg0t 10589 frecfzennn 10593 0tonninf 10607 1tonninf 10608 hashinfom 10945 hashunlem 10971 hash1 10978 nninfctlemfo 12436 ennnfonelemj0 12847 ennnfonelem1 12853 ennnfonelemhf1o 12859 ennnfonelemhom 12861 fnpr2o 13246 fvpr0o 13248 xpscf 13254 bj-nn0suc 16038 bj-nn0sucALT 16052 012of 16069 2o01f 16070 pwle2 16076 pwf1oexmid 16077 subctctexmid 16078 peano3nninf 16085 nninfall 16087 nninfsellemdc 16088 nninfsellemeq 16092 nninffeq 16098 nnnninfex 16100 isomninnlem 16110 iswomninnlem 16129 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |