Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano1 | GIF version |
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
peano1 | ⊢ ∅ ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4114 | . . . 4 ⊢ ∅ ∈ V | |
2 | 1 | elint 3835 | . . 3 ⊢ (∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧)) |
3 | df-clab 2157 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | |
4 | simpl 108 | . . . . . 6 ⊢ ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑦) | |
5 | 4 | sbimi 1757 | . . . . 5 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦) |
6 | clelsb2 2276 | . . . . 5 ⊢ ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧) | |
7 | 5, 6 | sylib 121 | . . . 4 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑧) |
8 | 3, 7 | sylbi 120 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧) |
9 | 2, 8 | mpgbir 1446 | . 2 ⊢ ∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
10 | dfom3 4574 | . 2 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
11 | 9, 10 | eleqtrri 2246 | 1 ⊢ ∅ ∈ ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 [wsb 1755 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∅c0 3414 ∩ cint 3829 suc csuc 4348 ωcom 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-nul 4113 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-nul 3415 df-int 3830 df-iom 4573 |
This theorem is referenced by: peano5 4580 limom 4596 nnregexmid 4603 omsinds 4604 nnpredcl 4605 frec0g 6374 frecabcl 6376 frecrdg 6385 oa1suc 6444 nna0r 6455 nnm0r 6456 nnmcl 6458 nnmsucr 6465 1onn 6497 nnm1 6502 nnaordex 6505 nnawordex 6506 php5 6834 php5dom 6839 0fin 6860 findcard2 6865 findcard2s 6866 infm 6880 inffiexmid 6882 0ct 7082 ctmlemr 7083 ctssdclemn0 7085 ctssdc 7088 omct 7092 nninfisol 7107 fodjum 7120 fodju0 7121 ctssexmid 7124 1lt2pi 7295 nq0m0r 7411 nq0a0 7412 prarloclem5 7455 frec2uzrand 10354 frecuzrdg0 10362 frecuzrdg0t 10371 frecfzennn 10375 0tonninf 10388 1tonninf 10389 hashinfom 10705 hashunlem 10732 hash1 10739 ennnfonelemj0 12349 ennnfonelem1 12355 ennnfonelemhf1o 12361 ennnfonelemhom 12363 bj-nn0suc 13964 bj-nn0sucALT 13978 012of 13993 2o01f 13994 pwle2 13996 pwf1oexmid 13997 subctctexmid 13999 peano3nninf 14005 nninfall 14007 nninfsellemdc 14008 nninfsellemeq 14012 nninffeq 14018 isomninnlem 14027 iswomninnlem 14046 ismkvnnlem 14049 |
Copyright terms: Public domain | W3C validator |