ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano1 GIF version

Theorem peano1 4576
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
peano1 ∅ ∈ ω

Proof of Theorem peano1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4114 . . . 4 ∅ ∈ V
21elint 3835 . . 3 (∅ ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → ∅ ∈ 𝑧))
3 df-clab 2157 . . . 4 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦))
4 simpl 108 . . . . . 6 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∅ ∈ 𝑦)
54sbimi 1757 . . . . 5 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦)
6 clelsb2 2276 . . . . 5 ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧)
75, 6sylib 121 . . . 4 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∅ ∈ 𝑧)
83, 7sylbi 120 . . 3 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → ∅ ∈ 𝑧)
92, 8mpgbir 1446 . 2 ∅ ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
10 dfom3 4574 . 2 ω = {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
119, 10eleqtrri 2246 1 ∅ ∈ ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  [wsb 1755  wcel 2141  {cab 2156  wral 2448  c0 3414   cint 3829  suc csuc 4348  ωcom 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4113
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-nul 3415  df-int 3830  df-iom 4573
This theorem is referenced by:  peano5  4580  limom  4596  nnregexmid  4603  omsinds  4604  nnpredcl  4605  frec0g  6374  frecabcl  6376  frecrdg  6385  oa1suc  6444  nna0r  6455  nnm0r  6456  nnmcl  6458  nnmsucr  6465  1onn  6497  nnm1  6502  nnaordex  6505  nnawordex  6506  php5  6834  php5dom  6839  0fin  6860  findcard2  6865  findcard2s  6866  infm  6880  inffiexmid  6882  0ct  7082  ctmlemr  7083  ctssdclemn0  7085  ctssdc  7088  omct  7092  nninfisol  7107  fodjum  7120  fodju0  7121  ctssexmid  7124  1lt2pi  7295  nq0m0r  7411  nq0a0  7412  prarloclem5  7455  frec2uzrand  10354  frecuzrdg0  10362  frecuzrdg0t  10371  frecfzennn  10375  0tonninf  10388  1tonninf  10389  hashinfom  10705  hashunlem  10732  hash1  10739  ennnfonelemj0  12349  ennnfonelem1  12355  ennnfonelemhf1o  12361  ennnfonelemhom  12363  bj-nn0suc  13964  bj-nn0sucALT  13978  012of  13993  2o01f  13994  pwle2  13996  pwf1oexmid  13997  subctctexmid  13999  peano3nninf  14005  nninfall  14007  nninfsellemdc  14008  nninfsellemeq  14012  nninffeq  14018  isomninnlem  14027  iswomninnlem  14046  ismkvnnlem  14049
  Copyright terms: Public domain W3C validator