| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4160 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | 1 | elint 3880 | . . 3 ⊢ (∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧)) |
| 3 | df-clab 2183 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | |
| 4 | simpl 109 | . . . . . 6 ⊢ ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑦) | |
| 5 | 4 | sbimi 1778 | . . . . 5 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦) |
| 6 | clelsb2 2302 | . . . . 5 ⊢ ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧) | |
| 7 | 5, 6 | sylib 122 | . . . 4 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑧) |
| 8 | 3, 7 | sylbi 121 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧) |
| 9 | 2, 8 | mpgbir 1467 | . 2 ⊢ ∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
| 10 | dfom3 4628 | . 2 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 11 | 9, 10 | eleqtrri 2272 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 [wsb 1776 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∅c0 3450 ∩ cint 3874 suc csuc 4400 ωcom 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 df-int 3875 df-iom 4627 |
| This theorem is referenced by: peano5 4634 limom 4650 nnregexmid 4657 omsinds 4658 nnpredcl 4659 frec0g 6455 frecabcl 6457 frecrdg 6466 oa1suc 6525 nna0r 6536 nnm0r 6537 nnmcl 6539 nnmsucr 6546 1onn 6578 nnm1 6583 nnaordex 6586 nnawordex 6587 php5 6919 php5dom 6924 0fin 6945 findcard2 6950 findcard2s 6951 infm 6965 inffiexmid 6967 0ct 7173 ctmlemr 7174 ctssdclemn0 7176 ctssdc 7179 omct 7183 nninfisol 7199 fodjum 7212 fodju0 7213 ctssexmid 7216 nninfwlpoimlemg 7241 nninfwlpoimlemginf 7242 1lt2pi 7407 nq0m0r 7523 nq0a0 7524 prarloclem5 7567 frec2uzrand 10497 frecuzrdg0 10505 frecuzrdg0t 10514 frecfzennn 10518 0tonninf 10532 1tonninf 10533 hashinfom 10870 hashunlem 10896 hash1 10903 nninfctlemfo 12207 ennnfonelemj0 12618 ennnfonelem1 12624 ennnfonelemhf1o 12630 ennnfonelemhom 12632 fnpr2o 12982 fvpr0o 12984 xpscf 12990 bj-nn0suc 15610 bj-nn0sucALT 15624 012of 15640 2o01f 15641 pwle2 15643 pwf1oexmid 15644 subctctexmid 15645 peano3nninf 15651 nninfall 15653 nninfsellemdc 15654 nninfsellemeq 15658 nninffeq 15664 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 |
| Copyright terms: Public domain | W3C validator |