| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4170 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | 1 | elint 3890 | . . 3 ⊢ (∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧)) |
| 3 | df-clab 2191 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | |
| 4 | simpl 109 | . . . . . 6 ⊢ ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑦) | |
| 5 | 4 | sbimi 1786 | . . . . 5 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∅ ∈ 𝑦) |
| 6 | clelsb2 2310 | . . . . 5 ⊢ ([𝑧 / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ 𝑧) | |
| 7 | 5, 6 | sylib 122 | . . . 4 ⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∅ ∈ 𝑧) |
| 8 | 3, 7 | sylbi 121 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∅ ∈ 𝑧) |
| 9 | 2, 8 | mpgbir 1475 | . 2 ⊢ ∅ ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
| 10 | dfom3 4639 | . 2 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 11 | 9, 10 | eleqtrri 2280 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 [wsb 1784 ∈ wcel 2175 {cab 2190 ∀wral 2483 ∅c0 3459 ∩ cint 3884 suc csuc 4411 ωcom 4637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-nul 4169 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-nul 3460 df-int 3885 df-iom 4638 |
| This theorem is referenced by: peano5 4645 limom 4661 nnregexmid 4668 omsinds 4669 nnpredcl 4670 frec0g 6482 frecabcl 6484 frecrdg 6493 oa1suc 6552 nna0r 6563 nnm0r 6564 nnmcl 6566 nnmsucr 6573 1onn 6605 nnm1 6610 nnaordex 6613 nnawordex 6614 php5 6954 php5dom 6959 0fin 6980 findcard2 6985 findcard2s 6986 infm 7000 inffiexmid 7002 0ct 7208 ctmlemr 7209 ctssdclemn0 7211 ctssdc 7214 omct 7218 nninfisol 7234 fodjum 7247 fodju0 7248 ctssexmid 7251 nninfwlpoimlemg 7276 nninfwlpoimlemginf 7277 1lt2pi 7452 nq0m0r 7568 nq0a0 7569 prarloclem5 7612 frec2uzrand 10548 frecuzrdg0 10556 frecuzrdg0t 10565 frecfzennn 10569 0tonninf 10583 1tonninf 10584 hashinfom 10921 hashunlem 10947 hash1 10954 nninfctlemfo 12303 ennnfonelemj0 12714 ennnfonelem1 12720 ennnfonelemhf1o 12726 ennnfonelemhom 12728 fnpr2o 13113 fvpr0o 13115 xpscf 13121 bj-nn0suc 15833 bj-nn0sucALT 15847 012of 15863 2o01f 15864 pwle2 15868 pwf1oexmid 15869 subctctexmid 15870 peano3nninf 15877 nninfall 15879 nninfsellemdc 15880 nninfsellemeq 15884 nninffeq 15890 nnnninfex 15892 isomninnlem 15902 iswomninnlem 15921 ismkvnnlem 15924 |
| Copyright terms: Public domain | W3C validator |