Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omex | GIF version |
Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 4582 | . . 3 ⊢ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | |
2 | intexabim 4147 | . . 3 ⊢ (∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V |
4 | dfom3 4585 | . . 3 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
5 | 4 | eleq1i 2241 | . 2 ⊢ (ω ∈ V ↔ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) |
6 | 3, 5 | mpbir 146 | 1 ⊢ ω ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1490 ∈ wcel 2146 {cab 2161 ∀wral 2453 Vcvv 2735 ∅c0 3420 ∩ cint 3840 suc csuc 4359 ωcom 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-in 3133 df-ss 3140 df-int 3841 df-iom 4584 |
This theorem is referenced by: peano5 4591 omelon 4602 frecex 6385 frecabex 6389 fict 6858 infnfi 6885 ominf 6886 inffiexmid 6896 omp1eom 7084 difinfsn 7089 0ct 7096 ctmlemr 7097 ctssdclemn0 7099 ctssdclemr 7101 ctssdc 7102 enumct 7104 omct 7106 ctfoex 7107 nninfex 7110 infnninf 7112 infnninfOLD 7113 nnnninf 7114 exmidlpo 7131 nninfdcinf 7159 nninfwlporlem 7161 nninfwlpoimlemg 7163 nninfwlpoim 7166 cc2lem 7240 niex 7286 enq0ex 7413 nq0ex 7414 uzenom 10395 frecfzennn 10396 nnenom 10404 fxnn0nninf 10408 0tonninf 10409 1tonninf 10410 inftonninf 10411 hashinfuni 10725 hashinfom 10726 xpct 12364 ennnfonelemj0 12369 ennnfonelemg 12371 ennnfonelemen 12389 ctiunct 12408 omctfn 12411 ssomct 12413 bj-charfunbi 14123 subctctexmid 14311 0nninf 14314 nnsf 14315 peano4nninf 14316 peano3nninf 14317 nninfself 14323 nninfsellemeq 14324 nninfsellemeqinf 14326 sbthom 14335 |
Copyright terms: Public domain | W3C validator |