| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omex | GIF version | ||
| Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf2 4625 | . . 3 ⊢ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | |
| 2 | intexabim 4185 | . . 3 ⊢ (∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V |
| 4 | dfom3 4628 | . . 3 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 5 | 4 | eleq1i 2262 | . 2 ⊢ (ω ∈ V ↔ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) |
| 6 | 3, 5 | mpbir 146 | 1 ⊢ ω ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∀wral 2475 Vcvv 2763 ∅c0 3450 ∩ cint 3874 suc csuc 4400 ωcom 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-iom 4627 |
| This theorem is referenced by: peano5 4634 omelon 4645 frecex 6452 frecabex 6456 fict 6929 infnfi 6956 ominf 6957 inffiexmid 6967 omp1eom 7161 difinfsn 7166 0ct 7173 ctmlemr 7174 ctssdclemn0 7176 ctssdclemr 7178 ctssdc 7179 enumct 7181 omct 7183 ctfoex 7184 nninfex 7187 infnninf 7190 infnninfOLD 7191 nnnninf 7192 exmidlpo 7209 nninfdcinf 7237 nninfwlporlem 7239 nninfwlpoimlemg 7241 nninfwlpoim 7244 cc2lem 7333 niex 7379 enq0ex 7506 nq0ex 7507 uzenom 10517 frecfzennn 10518 nnenom 10526 fxnn0nninf 10531 0tonninf 10532 1tonninf 10533 inftonninf 10534 nninfinf 10535 hashinfuni 10869 hashinfom 10870 nninfctlemfo 12207 nninfct 12208 xpct 12613 ennnfonelemj0 12618 ennnfonelemg 12620 ennnfonelemen 12638 ctiunct 12657 omctfn 12660 ssomct 12662 bj-charfunbi 15457 subctctexmid 15645 0nninf 15648 nnsf 15649 peano4nninf 15650 peano3nninf 15651 nninfself 15657 nninfsellemeq 15658 nninfsellemeqinf 15660 sbthom 15670 |
| Copyright terms: Public domain | W3C validator |