Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omex | GIF version |
Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 4566 | . . 3 ⊢ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | |
2 | intexabim 4131 | . . 3 ⊢ (∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V |
4 | dfom3 4569 | . . 3 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
5 | 4 | eleq1i 2232 | . 2 ⊢ (ω ∈ V ↔ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) |
6 | 3, 5 | mpbir 145 | 1 ⊢ ω ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∃wex 1480 ∈ wcel 2136 {cab 2151 ∀wral 2444 Vcvv 2726 ∅c0 3409 ∩ cint 3824 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 df-iom 4568 |
This theorem is referenced by: peano5 4575 omelon 4586 frecex 6362 frecabex 6366 fict 6834 infnfi 6861 ominf 6862 inffiexmid 6872 omp1eom 7060 difinfsn 7065 0ct 7072 ctmlemr 7073 ctssdclemn0 7075 ctssdclemr 7077 ctssdc 7078 enumct 7080 omct 7082 ctfoex 7083 nninfex 7086 infnninf 7088 infnninfOLD 7089 nnnninf 7090 exmidlpo 7107 cc2lem 7207 niex 7253 enq0ex 7380 nq0ex 7381 uzenom 10360 frecfzennn 10361 nnenom 10369 fxnn0nninf 10373 0tonninf 10374 1tonninf 10375 inftonninf 10376 hashinfuni 10690 hashinfom 10691 xpct 12329 ennnfonelemj0 12334 ennnfonelemg 12336 ennnfonelemen 12354 ctiunct 12373 omctfn 12376 ssomct 12378 bj-charfunbi 13693 subctctexmid 13881 0nninf 13884 nnsf 13885 peano4nninf 13886 peano3nninf 13887 nninfself 13893 nninfsellemeq 13894 nninfsellemeqinf 13896 sbthom 13905 |
Copyright terms: Public domain | W3C validator |