| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omex | GIF version | ||
| Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf2 4626 | . . 3 ⊢ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | |
| 2 | intexabim 4186 | . . 3 ⊢ (∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V |
| 4 | dfom3 4629 | . . 3 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 5 | 4 | eleq1i 2262 | . 2 ⊢ (ω ∈ V ↔ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) |
| 6 | 3, 5 | mpbir 146 | 1 ⊢ ω ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∀wral 2475 Vcvv 2763 ∅c0 3451 ∩ cint 3875 suc csuc 4401 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3876 df-iom 4628 |
| This theorem is referenced by: peano5 4635 omelon 4646 frecex 6461 frecabex 6465 fict 6938 infnfi 6965 ominf 6966 inffiexmid 6976 omp1eom 7170 difinfsn 7175 0ct 7182 ctmlemr 7183 ctssdclemn0 7185 ctssdclemr 7187 ctssdc 7188 enumct 7190 omct 7192 ctfoex 7193 nninfex 7196 infnninf 7199 infnninfOLD 7200 nnnninf 7201 exmidlpo 7218 nninfdcinf 7246 nninfwlporlem 7248 nninfwlpoimlemg 7250 nninfwlpoim 7254 nninfinfwlpo 7255 cc2lem 7351 acnccim 7357 niex 7398 enq0ex 7525 nq0ex 7526 uzenom 10536 frecfzennn 10537 nnenom 10545 fxnn0nninf 10550 0tonninf 10551 1tonninf 10552 inftonninf 10553 nninfinf 10554 hashinfuni 10888 hashinfom 10889 nninfctlemfo 12234 nninfct 12235 xpct 12640 ennnfonelemj0 12645 ennnfonelemg 12647 ennnfonelemen 12665 ctiunct 12684 omctfn 12687 ssomct 12689 bj-charfunbi 15565 subctctexmid 15755 0nninf 15759 nnsf 15760 peano4nninf 15761 peano3nninf 15762 nninfself 15768 nninfsellemeq 15769 nninfsellemeqinf 15771 sbthom 15783 |
| Copyright terms: Public domain | W3C validator |