| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omex | GIF version | ||
| Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf2 4644 | . . 3 ⊢ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | |
| 2 | intexabim 4203 | . . 3 ⊢ (∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V |
| 4 | dfom3 4647 | . . 3 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 5 | 4 | eleq1i 2272 | . 2 ⊢ (ω ∈ V ↔ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) |
| 6 | 3, 5 | mpbir 146 | 1 ⊢ ω ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1516 ∈ wcel 2177 {cab 2192 ∀wral 2485 Vcvv 2773 ∅c0 3464 ∩ cint 3890 suc csuc 4419 ωcom 4645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4169 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3176 df-ss 3183 df-int 3891 df-iom 4646 |
| This theorem is referenced by: peano5 4653 omelon 4664 frecex 6492 frecabex 6496 fict 6979 infnfi 7006 ominf 7007 inffiexmid 7017 omp1eom 7211 difinfsn 7216 0ct 7223 ctmlemr 7224 ctssdclemn0 7226 ctssdclemr 7228 ctssdc 7229 enumct 7231 omct 7233 ctfoex 7234 nninfex 7237 infnninf 7240 infnninfOLD 7241 nnnninf 7242 exmidlpo 7259 nninfdcinf 7287 nninfwlporlem 7289 nninfwlpoimlemg 7291 nninfwlpoim 7295 nninfinfwlpo 7296 cc2lem 7393 acnccim 7399 niex 7440 enq0ex 7567 nq0ex 7568 uzenom 10587 frecfzennn 10588 nnenom 10596 fxnn0nninf 10601 0tonninf 10602 1tonninf 10603 inftonninf 10604 nninfinf 10605 hashinfuni 10939 hashinfom 10940 nninfctlemfo 12431 nninfct 12432 xpct 12837 ennnfonelemj0 12842 ennnfonelemg 12844 ennnfonelemen 12862 ctiunct 12881 omctfn 12884 ssomct 12886 bj-charfunbi 15881 subctctexmid 16072 0nninf 16076 nnsf 16077 peano4nninf 16078 peano3nninf 16079 nninfself 16085 nninfsellemeq 16086 nninfsellemeqinf 16088 sbthom 16100 |
| Copyright terms: Public domain | W3C validator |