| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omex | GIF version | ||
| Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf2 4680 | . . 3 ⊢ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | |
| 2 | intexabim 4235 | . . 3 ⊢ (∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V |
| 4 | dfom3 4683 | . . 3 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
| 5 | 4 | eleq1i 2295 | . 2 ⊢ (ω ∈ V ↔ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) |
| 6 | 3, 5 | mpbir 146 | 1 ⊢ ω ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∀wral 2508 Vcvv 2799 ∅c0 3491 ∩ cint 3922 suc csuc 4455 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3923 df-iom 4682 |
| This theorem is referenced by: peano5 4689 omelon 4700 frecex 6538 frecabex 6542 fict 7026 infnfi 7053 ominf 7054 inffiexmid 7064 omp1eom 7258 difinfsn 7263 0ct 7270 ctmlemr 7271 ctssdclemn0 7273 ctssdclemr 7275 ctssdc 7276 enumct 7278 omct 7280 ctfoex 7281 nninfex 7284 infnninf 7287 infnninfOLD 7288 nnnninf 7289 exmidlpo 7306 nninfdcinf 7334 nninfwlporlem 7336 nninfwlpoimlemg 7338 nninfwlpoim 7342 nninfinfwlpo 7343 cc2lem 7448 acnccim 7454 niex 7495 enq0ex 7622 nq0ex 7623 uzenom 10642 frecfzennn 10643 nnenom 10651 fxnn0nninf 10656 0tonninf 10657 1tonninf 10658 inftonninf 10659 nninfinf 10660 hashinfuni 10994 hashinfom 10995 nninfctlemfo 12556 nninfct 12557 xpct 12962 ennnfonelemj0 12967 ennnfonelemg 12969 ennnfonelemen 12987 ctiunct 13006 omctfn 13009 ssomct 13011 bj-charfunbi 16132 subctctexmid 16325 0nninf 16329 nnsf 16330 peano4nninf 16331 peano3nninf 16332 nninfself 16338 nninfsellemeq 16339 nninfsellemeqinf 16341 sbthom 16353 |
| Copyright terms: Public domain | W3C validator |