![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omex | GIF version |
Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 4622 | . . 3 ⊢ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | |
2 | intexabim 4182 | . . 3 ⊢ (∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V |
4 | dfom3 4625 | . . 3 ⊢ ω = ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | |
5 | 4 | eleq1i 2259 | . 2 ⊢ (ω ∈ V ↔ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ∈ V) |
6 | 3, 5 | mpbir 146 | 1 ⊢ ω ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∀wral 2472 Vcvv 2760 ∅c0 3447 ∩ cint 3871 suc csuc 4397 ωcom 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3160 df-ss 3167 df-int 3872 df-iom 4624 |
This theorem is referenced by: peano5 4631 omelon 4642 frecex 6449 frecabex 6453 fict 6926 infnfi 6953 ominf 6954 inffiexmid 6964 omp1eom 7156 difinfsn 7161 0ct 7168 ctmlemr 7169 ctssdclemn0 7171 ctssdclemr 7173 ctssdc 7174 enumct 7176 omct 7178 ctfoex 7179 nninfex 7182 infnninf 7185 infnninfOLD 7186 nnnninf 7187 exmidlpo 7204 nninfdcinf 7232 nninfwlporlem 7234 nninfwlpoimlemg 7236 nninfwlpoim 7239 cc2lem 7328 niex 7374 enq0ex 7501 nq0ex 7502 uzenom 10499 frecfzennn 10500 nnenom 10508 fxnn0nninf 10513 0tonninf 10514 1tonninf 10515 inftonninf 10516 nninfinf 10517 hashinfuni 10851 hashinfom 10852 nninfctlemfo 12180 nninfct 12181 xpct 12556 ennnfonelemj0 12561 ennnfonelemg 12563 ennnfonelemen 12581 ctiunct 12600 omctfn 12603 ssomct 12605 bj-charfunbi 15373 subctctexmid 15561 0nninf 15564 nnsf 15565 peano4nninf 15566 peano3nninf 15567 nninfself 15573 nninfsellemeq 15574 nninfsellemeqinf 15576 sbthom 15586 |
Copyright terms: Public domain | W3C validator |