ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2 GIF version

Theorem peano2 4594
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano2 (𝐴 ∈ ω → suc 𝐴 ∈ ω)

Proof of Theorem peano2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2748 . 2 (𝐴 ∈ ω → 𝐴 ∈ V)
2 simpl 109 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝐴 ∈ V)
3 eleq1 2240 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
4 suceq 4402 . . . . . . . . 9 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
54eleq1d 2246 . . . . . . . 8 (𝑥 = 𝐴 → (suc 𝑥𝑧 ↔ suc 𝐴𝑧))
63, 5imbi12d 234 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
76adantl 277 . . . . . 6 (((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ∧ 𝑥 = 𝐴) → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
8 df-clab 2164 . . . . . . . . 9 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦))
9 simpr 110 . . . . . . . . . . . 12 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥𝑦 suc 𝑥𝑦)
10 df-ral 2460 . . . . . . . . . . . 12 (∀𝑥𝑦 suc 𝑥𝑦 ↔ ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
119, 10sylib 122 . . . . . . . . . . 11 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
1211sbimi 1764 . . . . . . . . . 10 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → [𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
13 sbim 1953 . . . . . . . . . . . 12 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ ([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦))
14 clelsb2 2283 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]𝑥𝑦𝑥𝑧)
15 clelsb2 2283 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]suc 𝑥𝑦 ↔ suc 𝑥𝑧)
1614, 15imbi12i 239 . . . . . . . . . . . 12 (([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1713, 16bitri 184 . . . . . . . . . . 11 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1817sbalv 2005 . . . . . . . . . 10 ([𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦) ↔ ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
1912, 18sylib 122 . . . . . . . . 9 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
208, 19sylbi 121 . . . . . . . 8 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
212019.21bi 1558 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → (𝑥𝑧 → suc 𝑥𝑧))
2221adantl 277 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝑥𝑧 → suc 𝑥𝑧))
23 nfv 1528 . . . . . . 7 𝑥 𝐴 ∈ V
24 nfv 1528 . . . . . . . . 9 𝑥∅ ∈ 𝑦
25 nfra1 2508 . . . . . . . . 9 𝑥𝑥𝑦 suc 𝑥𝑦
2624, 25nfan 1565 . . . . . . . 8 𝑥(∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)
2726nfsab 2169 . . . . . . 7 𝑥 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
2823, 27nfan 1565 . . . . . 6 𝑥(𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
29 nfcvd 2320 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝑥𝐴)
30 nfvd 1529 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → Ⅎ𝑥(𝐴𝑧 → suc 𝐴𝑧))
312, 7, 22, 28, 29, 30vtocldf 2788 . . . . 5 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝐴𝑧 → suc 𝐴𝑧))
3231ralrimiva 2550 . . . 4 (𝐴 ∈ V → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧))
33 ralim 2536 . . . . 5 (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
34 elintg 3852 . . . . . 6 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧))
35 sucexg 4497 . . . . . . 7 (𝐴 ∈ V → suc 𝐴 ∈ V)
36 elintg 3852 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3735, 36syl 14 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3834, 37imbi12d 234 . . . . 5 (𝐴 ∈ V → ((𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ↔ (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧)))
3933, 38imbitrrid 156 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})))
4032, 39mpd 13 . . 3 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}))
41 dfom3 4591 . . . 4 ω = {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
4241eleq2i 2244 . . 3 (𝐴 ∈ ω ↔ 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4341eleq2i 2244 . . 3 (suc 𝐴 ∈ ω ↔ suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4440, 42, 433imtr4g 205 . 2 (𝐴 ∈ V → (𝐴 ∈ ω → suc 𝐴 ∈ ω))
451, 44mpcom 36 1 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  [wsb 1762  wcel 2148  {cab 2163  wral 2455  Vcvv 2737  c0 3422   cint 3844  suc csuc 4365  ωcom 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-uni 3810  df-int 3845  df-suc 4371  df-iom 4590
This theorem is referenced by:  peano5  4597  limom  4613  peano2b  4614  nnregexmid  4620  omsinds  4621  freccllem  6402  frecfcllem  6404  frecsuclem  6406  frecrdg  6408  nnacl  6480  nnacom  6484  nnmsucr  6488  nnsucsssuc  6492  nnaword  6511  1onn  6520  2onn  6521  3onn  6522  4onn  6523  nnaordex  6528  php5  6857  phplem4dom  6861  php5dom  6862  phplem4on  6866  dif1en  6878  findcard  6887  findcard2  6888  findcard2s  6889  infnfi  6894  unsnfi  6917  omp1eomlem  7092  ctmlemr  7106  infnninf  7121  infnninfOLD  7122  nnnninf  7123  nnnninfeq  7125  nninfwlpoimlemg  7172  nninfwlpoimlemginf  7173  frec2uzrand  10404  frecuzrdgsuc  10413  frecuzrdgsuctlem  10422  frecfzennn  10425  hashunlem  10783  ennnfonelemk  12400  ennnfonelemg  12403  ennnfonelemkh  12412  ennnfonelemhf1o  12413  ennnfonelemex  12414  ennnfonelemrn  12419  ennnfonelemnn0  12422  ctinfomlemom  12427  0nninf  14689  nnsf  14690  peano4nninf  14691  nninfsellemdc  14695  nninfsellemsuc  14697  nninfself  14698  nninfsellemeqinf  14701
  Copyright terms: Public domain W3C validator