ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2 GIF version

Theorem peano2 4686
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano2 (𝐴 ∈ ω → suc 𝐴 ∈ ω)

Proof of Theorem peano2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . 2 (𝐴 ∈ ω → 𝐴 ∈ V)
2 simpl 109 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝐴 ∈ V)
3 eleq1 2292 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
4 suceq 4492 . . . . . . . . 9 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
54eleq1d 2298 . . . . . . . 8 (𝑥 = 𝐴 → (suc 𝑥𝑧 ↔ suc 𝐴𝑧))
63, 5imbi12d 234 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
76adantl 277 . . . . . 6 (((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ∧ 𝑥 = 𝐴) → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
8 df-clab 2216 . . . . . . . . 9 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦))
9 simpr 110 . . . . . . . . . . . 12 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥𝑦 suc 𝑥𝑦)
10 df-ral 2513 . . . . . . . . . . . 12 (∀𝑥𝑦 suc 𝑥𝑦 ↔ ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
119, 10sylib 122 . . . . . . . . . . 11 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
1211sbimi 1810 . . . . . . . . . 10 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → [𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
13 sbim 2004 . . . . . . . . . . . 12 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ ([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦))
14 clelsb2 2335 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]𝑥𝑦𝑥𝑧)
15 clelsb2 2335 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]suc 𝑥𝑦 ↔ suc 𝑥𝑧)
1614, 15imbi12i 239 . . . . . . . . . . . 12 (([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1713, 16bitri 184 . . . . . . . . . . 11 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1817sbalv 2056 . . . . . . . . . 10 ([𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦) ↔ ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
1912, 18sylib 122 . . . . . . . . 9 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
208, 19sylbi 121 . . . . . . . 8 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
212019.21bi 1604 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → (𝑥𝑧 → suc 𝑥𝑧))
2221adantl 277 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝑥𝑧 → suc 𝑥𝑧))
23 nfv 1574 . . . . . . 7 𝑥 𝐴 ∈ V
24 nfv 1574 . . . . . . . . 9 𝑥∅ ∈ 𝑦
25 nfra1 2561 . . . . . . . . 9 𝑥𝑥𝑦 suc 𝑥𝑦
2624, 25nfan 1611 . . . . . . . 8 𝑥(∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)
2726nfsab 2221 . . . . . . 7 𝑥 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
2823, 27nfan 1611 . . . . . 6 𝑥(𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
29 nfcvd 2373 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝑥𝐴)
30 nfvd 1575 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → Ⅎ𝑥(𝐴𝑧 → suc 𝐴𝑧))
312, 7, 22, 28, 29, 30vtocldf 2852 . . . . 5 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝐴𝑧 → suc 𝐴𝑧))
3231ralrimiva 2603 . . . 4 (𝐴 ∈ V → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧))
33 ralim 2589 . . . . 5 (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
34 elintg 3930 . . . . . 6 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧))
35 sucexg 4589 . . . . . . 7 (𝐴 ∈ V → suc 𝐴 ∈ V)
36 elintg 3930 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3735, 36syl 14 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3834, 37imbi12d 234 . . . . 5 (𝐴 ∈ V → ((𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ↔ (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧)))
3933, 38imbitrrid 156 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})))
4032, 39mpd 13 . . 3 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}))
41 dfom3 4683 . . . 4 ω = {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
4241eleq2i 2296 . . 3 (𝐴 ∈ ω ↔ 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4341eleq2i 2296 . . 3 (suc 𝐴 ∈ ω ↔ suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4440, 42, 433imtr4g 205 . 2 (𝐴 ∈ V → (𝐴 ∈ ω → suc 𝐴 ∈ ω))
451, 44mpcom 36 1 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  [wsb 1808  wcel 2200  {cab 2215  wral 2508  Vcvv 2799  c0 3491   cint 3922  suc csuc 4455  ωcom 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-suc 4461  df-iom 4682
This theorem is referenced by:  peano5  4689  limom  4705  peano2b  4706  nnregexmid  4712  omsinds  4713  freccllem  6546  frecfcllem  6548  frecsuclem  6550  frecrdg  6552  nnacl  6624  nnacom  6628  nnmsucr  6632  nnsucsssuc  6636  nnaword  6655  1onn  6664  2onn  6665  3onn  6666  4onn  6667  nnaordex  6672  php5  7015  phplem4dom  7019  php5dom  7020  phplem4on  7025  dif1en  7037  findcard  7046  findcard2  7047  findcard2s  7048  infnfi  7053  unsnfi  7077  omp1eomlem  7257  ctmlemr  7271  nninfninc  7286  infnninf  7287  infnninfOLD  7288  nnnninf  7289  nnnninfeq  7291  nninfwlpoimlemg  7338  nninfwlpoimlemginf  7339  frec2uzrand  10622  frecuzrdgsuc  10631  frecuzrdgsuctlem  10640  frecfzennn  10643  hashunlem  11021  ennnfonelemk  12966  ennnfonelemg  12969  ennnfonelemkh  12978  ennnfonelemhf1o  12979  ennnfonelemex  12980  ennnfonelemrn  12985  ennnfonelemnn0  12988  ctinfomlemom  12993  0nninf  16329  nnsf  16330  peano4nninf  16331  nninfsellemdc  16335  nninfsellemsuc  16337  nninfself  16338  nninfsellemeqinf  16341  nnnninfex  16347
  Copyright terms: Public domain W3C validator