ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2 GIF version

Theorem peano2 4651
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano2 (𝐴 ∈ ω → suc 𝐴 ∈ ω)

Proof of Theorem peano2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2785 . 2 (𝐴 ∈ ω → 𝐴 ∈ V)
2 simpl 109 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝐴 ∈ V)
3 eleq1 2269 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
4 suceq 4457 . . . . . . . . 9 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
54eleq1d 2275 . . . . . . . 8 (𝑥 = 𝐴 → (suc 𝑥𝑧 ↔ suc 𝐴𝑧))
63, 5imbi12d 234 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
76adantl 277 . . . . . 6 (((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ∧ 𝑥 = 𝐴) → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
8 df-clab 2193 . . . . . . . . 9 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦))
9 simpr 110 . . . . . . . . . . . 12 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥𝑦 suc 𝑥𝑦)
10 df-ral 2490 . . . . . . . . . . . 12 (∀𝑥𝑦 suc 𝑥𝑦 ↔ ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
119, 10sylib 122 . . . . . . . . . . 11 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
1211sbimi 1788 . . . . . . . . . 10 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → [𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
13 sbim 1982 . . . . . . . . . . . 12 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ ([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦))
14 clelsb2 2312 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]𝑥𝑦𝑥𝑧)
15 clelsb2 2312 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]suc 𝑥𝑦 ↔ suc 𝑥𝑧)
1614, 15imbi12i 239 . . . . . . . . . . . 12 (([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1713, 16bitri 184 . . . . . . . . . . 11 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1817sbalv 2034 . . . . . . . . . 10 ([𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦) ↔ ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
1912, 18sylib 122 . . . . . . . . 9 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
208, 19sylbi 121 . . . . . . . 8 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
212019.21bi 1582 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → (𝑥𝑧 → suc 𝑥𝑧))
2221adantl 277 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝑥𝑧 → suc 𝑥𝑧))
23 nfv 1552 . . . . . . 7 𝑥 𝐴 ∈ V
24 nfv 1552 . . . . . . . . 9 𝑥∅ ∈ 𝑦
25 nfra1 2538 . . . . . . . . 9 𝑥𝑥𝑦 suc 𝑥𝑦
2624, 25nfan 1589 . . . . . . . 8 𝑥(∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)
2726nfsab 2198 . . . . . . 7 𝑥 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
2823, 27nfan 1589 . . . . . 6 𝑥(𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
29 nfcvd 2350 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝑥𝐴)
30 nfvd 1553 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → Ⅎ𝑥(𝐴𝑧 → suc 𝐴𝑧))
312, 7, 22, 28, 29, 30vtocldf 2826 . . . . 5 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝐴𝑧 → suc 𝐴𝑧))
3231ralrimiva 2580 . . . 4 (𝐴 ∈ V → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧))
33 ralim 2566 . . . . 5 (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
34 elintg 3899 . . . . . 6 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧))
35 sucexg 4554 . . . . . . 7 (𝐴 ∈ V → suc 𝐴 ∈ V)
36 elintg 3899 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3735, 36syl 14 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3834, 37imbi12d 234 . . . . 5 (𝐴 ∈ V → ((𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ↔ (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧)))
3933, 38imbitrrid 156 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})))
4032, 39mpd 13 . . 3 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}))
41 dfom3 4648 . . . 4 ω = {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
4241eleq2i 2273 . . 3 (𝐴 ∈ ω ↔ 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4341eleq2i 2273 . . 3 (suc 𝐴 ∈ ω ↔ suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4440, 42, 433imtr4g 205 . 2 (𝐴 ∈ V → (𝐴 ∈ ω → suc 𝐴 ∈ ω))
451, 44mpcom 36 1 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  [wsb 1786  wcel 2177  {cab 2192  wral 2485  Vcvv 2773  c0 3464   cint 3891  suc csuc 4420  ωcom 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-int 3892  df-suc 4426  df-iom 4647
This theorem is referenced by:  peano5  4654  limom  4670  peano2b  4671  nnregexmid  4677  omsinds  4678  freccllem  6501  frecfcllem  6503  frecsuclem  6505  frecrdg  6507  nnacl  6579  nnacom  6583  nnmsucr  6587  nnsucsssuc  6591  nnaword  6610  1onn  6619  2onn  6620  3onn  6621  4onn  6622  nnaordex  6627  php5  6970  phplem4dom  6974  php5dom  6975  phplem4on  6979  dif1en  6991  findcard  7000  findcard2  7001  findcard2s  7002  infnfi  7007  unsnfi  7031  omp1eomlem  7211  ctmlemr  7225  nninfninc  7240  infnninf  7241  infnninfOLD  7242  nnnninf  7243  nnnninfeq  7245  nninfwlpoimlemg  7292  nninfwlpoimlemginf  7293  frec2uzrand  10572  frecuzrdgsuc  10581  frecuzrdgsuctlem  10590  frecfzennn  10593  hashunlem  10971  ennnfonelemk  12846  ennnfonelemg  12849  ennnfonelemkh  12858  ennnfonelemhf1o  12859  ennnfonelemex  12860  ennnfonelemrn  12865  ennnfonelemnn0  12868  ctinfomlemom  12873  0nninf  16082  nnsf  16083  peano4nninf  16084  nninfsellemdc  16088  nninfsellemsuc  16090  nninfself  16091  nninfsellemeqinf  16094  nnnninfex  16100
  Copyright terms: Public domain W3C validator