ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2 GIF version

Theorem peano2 4438
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano2 (𝐴 ∈ ω → suc 𝐴 ∈ ω)

Proof of Theorem peano2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2644 . 2 (𝐴 ∈ ω → 𝐴 ∈ V)
2 simpl 108 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝐴 ∈ V)
3 eleq1 2157 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
4 suceq 4253 . . . . . . . . 9 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
54eleq1d 2163 . . . . . . . 8 (𝑥 = 𝐴 → (suc 𝑥𝑧 ↔ suc 𝐴𝑧))
63, 5imbi12d 233 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
76adantl 272 . . . . . 6 (((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ∧ 𝑥 = 𝐴) → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
8 df-clab 2082 . . . . . . . . 9 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦))
9 simpr 109 . . . . . . . . . . . 12 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥𝑦 suc 𝑥𝑦)
10 df-ral 2375 . . . . . . . . . . . 12 (∀𝑥𝑦 suc 𝑥𝑦 ↔ ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
119, 10sylib 121 . . . . . . . . . . 11 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
1211sbimi 1701 . . . . . . . . . 10 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → [𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
13 sbim 1882 . . . . . . . . . . . 12 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ ([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦))
14 elsb4 1908 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]𝑥𝑦𝑥𝑧)
15 clelsb4 2200 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]suc 𝑥𝑦 ↔ suc 𝑥𝑧)
1614, 15imbi12i 238 . . . . . . . . . . . 12 (([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1713, 16bitri 183 . . . . . . . . . . 11 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1817sbalv 1936 . . . . . . . . . 10 ([𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦) ↔ ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
1912, 18sylib 121 . . . . . . . . 9 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
208, 19sylbi 120 . . . . . . . 8 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
212019.21bi 1502 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → (𝑥𝑧 → suc 𝑥𝑧))
2221adantl 272 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝑥𝑧 → suc 𝑥𝑧))
23 nfv 1473 . . . . . . 7 𝑥 𝐴 ∈ V
24 nfv 1473 . . . . . . . . 9 𝑥∅ ∈ 𝑦
25 nfra1 2420 . . . . . . . . 9 𝑥𝑥𝑦 suc 𝑥𝑦
2624, 25nfan 1509 . . . . . . . 8 𝑥(∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)
2726nfsab 2087 . . . . . . 7 𝑥 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
2823, 27nfan 1509 . . . . . 6 𝑥(𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
29 nfcvd 2236 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝑥𝐴)
30 nfvd 1474 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → Ⅎ𝑥(𝐴𝑧 → suc 𝐴𝑧))
312, 7, 22, 28, 29, 30vtocldf 2684 . . . . 5 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝐴𝑧 → suc 𝐴𝑧))
3231ralrimiva 2458 . . . 4 (𝐴 ∈ V → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧))
33 ralim 2445 . . . . 5 (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
34 elintg 3718 . . . . . 6 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧))
35 sucexg 4343 . . . . . . 7 (𝐴 ∈ V → suc 𝐴 ∈ V)
36 elintg 3718 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3735, 36syl 14 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3834, 37imbi12d 233 . . . . 5 (𝐴 ∈ V → ((𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ↔ (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧)))
3933, 38syl5ibr 155 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})))
4032, 39mpd 13 . . 3 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}))
41 dfom3 4435 . . . 4 ω = {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
4241eleq2i 2161 . . 3 (𝐴 ∈ ω ↔ 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4341eleq2i 2161 . . 3 (suc 𝐴 ∈ ω ↔ suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4440, 42, 433imtr4g 204 . 2 (𝐴 ∈ V → (𝐴 ∈ ω → suc 𝐴 ∈ ω))
451, 44mpcom 36 1 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1294   = wceq 1296  wcel 1445  [wsb 1699  {cab 2081  wral 2370  Vcvv 2633  c0 3302   cint 3710  suc csuc 4216  ωcom 4433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-uni 3676  df-int 3711  df-suc 4222  df-iom 4434
This theorem is referenced by:  peano5  4441  limom  4456  peano2b  4457  nnregexmid  4462  omsinds  4463  freccllem  6205  frecfcllem  6207  frecsuclem  6209  frecrdg  6211  nnacl  6281  nnacom  6285  nnmsucr  6289  nnsucsssuc  6293  nnaword  6310  1onn  6319  2onn  6320  3onn  6321  4onn  6322  nnaordex  6326  php5  6654  phplem4dom  6658  php5dom  6659  phplem4on  6663  dif1en  6675  findcard  6684  findcard2  6685  findcard2s  6686  infnfi  6691  unsnfi  6709  ctmlemr  6870  infnninf  6893  nnnninf  6894  frec2uzrand  9961  frecuzrdgsuc  9970  frecuzrdgsuctlem  9979  frecfzennn  9982  hashunlem  10327  0nninf  12607  nnsf  12609  peano4nninf  12610  nninfalllemn  12612  nninfsellemdc  12616  nninfsellemsuc  12618  nninfself  12619  nninfsellemeqinf  12622
  Copyright terms: Public domain W3C validator