Step | Hyp | Ref
| Expression |
1 | | elex 2737 |
. 2
⊢ (𝐴 ∈ ω → 𝐴 ∈ V) |
2 | | simpl 108 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → 𝐴 ∈ V) |
3 | | eleq1 2229 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝐴 ∈ 𝑧)) |
4 | | suceq 4380 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) |
5 | 4 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (suc 𝑥 ∈ 𝑧 ↔ suc 𝐴 ∈ 𝑧)) |
6 | 3, 5 | imbi12d 233 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧) ↔ (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧))) |
7 | 6 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧) ↔ (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧))) |
8 | | df-clab 2152 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) |
9 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) |
10 | | df-ral 2449 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦 ↔ ∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) |
11 | 9, 10 | sylib 121 |
. . . . . . . . . . 11
⊢ ((∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) |
12 | 11 | sbimi 1752 |
. . . . . . . . . 10
⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) |
13 | | sbim 1941 |
. . . . . . . . . . . 12
⊢ ([𝑧 / 𝑦](𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ ([𝑧 / 𝑦]𝑥 ∈ 𝑦 → [𝑧 / 𝑦]suc 𝑥 ∈ 𝑦)) |
14 | | clelsb2 2272 |
. . . . . . . . . . . . 13
⊢ ([𝑧 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) |
15 | | clelsb2 2272 |
. . . . . . . . . . . . 13
⊢ ([𝑧 / 𝑦]suc 𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ 𝑧) |
16 | 14, 15 | imbi12i 238 |
. . . . . . . . . . . 12
⊢ (([𝑧 / 𝑦]𝑥 ∈ 𝑦 → [𝑧 / 𝑦]suc 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
17 | 13, 16 | bitri 183 |
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑦](𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
18 | 17 | sbalv 1993 |
. . . . . . . . . 10
⊢ ([𝑧 / 𝑦]∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
19 | 12, 18 | sylib 121 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
20 | 8, 19 | sylbi 120 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
21 | 20 | 19.21bi 1546 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
22 | 21 | adantl 275 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
23 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 ∈ V |
24 | | nfv 1516 |
. . . . . . . . 9
⊢
Ⅎ𝑥∅
∈ 𝑦 |
25 | | nfra1 2497 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦 |
26 | 24, 25 | nfan 1553 |
. . . . . . . 8
⊢
Ⅎ𝑥(∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) |
27 | 26 | nfsab 2157 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
28 | 23, 27 | nfan 1553 |
. . . . . 6
⊢
Ⅎ𝑥(𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) |
29 | | nfcvd 2309 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → Ⅎ𝑥𝐴) |
30 | | nfvd 1517 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → Ⅎ𝑥(𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) |
31 | 2, 7, 22, 28, 29, 30 | vtocldf 2777 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) |
32 | 31 | ralrimiva 2539 |
. . . 4
⊢ (𝐴 ∈ V → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) |
33 | | ralim 2525 |
. . . . 5
⊢
(∀𝑧 ∈
{𝑦 ∣ (∅ ∈
𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧) → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) |
34 | | elintg 3832 |
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧)) |
35 | | sucexg 4475 |
. . . . . . 7
⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) |
36 | | elintg 3832 |
. . . . . . 7
⊢ (suc
𝐴 ∈ V → (suc
𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) |
37 | 35, 36 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ V → (suc 𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) |
38 | 34, 37 | imbi12d 233 |
. . . . 5
⊢ (𝐴 ∈ V → ((𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) ↔ (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧))) |
39 | 33, 38 | syl5ibr 155 |
. . . 4
⊢ (𝐴 ∈ V → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧) → (𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}))) |
40 | 32, 39 | mpd 13 |
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)})) |
41 | | dfom3 4569 |
. . . 4
⊢ ω =
∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
42 | 41 | eleq2i 2233 |
. . 3
⊢ (𝐴 ∈ ω ↔ 𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)}) |
43 | 41 | eleq2i 2233 |
. . 3
⊢ (suc
𝐴 ∈ ω ↔ suc
𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)}) |
44 | 40, 42, 43 | 3imtr4g 204 |
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ ω → suc 𝐴 ∈
ω)) |
45 | 1, 44 | mpcom 36 |
1
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) |