| Step | Hyp | Ref
 | Expression | 
| 1 |   | elex 2774 | 
. 2
⊢ (𝐴 ∈ ω → 𝐴 ∈ V) | 
| 2 |   | simpl 109 | 
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → 𝐴 ∈ V) | 
| 3 |   | eleq1 2259 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝐴 ∈ 𝑧)) | 
| 4 |   | suceq 4437 | 
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) | 
| 5 | 4 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (suc 𝑥 ∈ 𝑧 ↔ suc 𝐴 ∈ 𝑧)) | 
| 6 | 3, 5 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧) ↔ (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧))) | 
| 7 | 6 | adantl 277 | 
. . . . . 6
⊢ (((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧) ↔ (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧))) | 
| 8 |   | df-clab 2183 | 
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) | 
| 9 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ ((∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | 
| 10 |   | df-ral 2480 | 
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦 ↔ ∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) | 
| 11 | 9, 10 | sylib 122 | 
. . . . . . . . . . 11
⊢ ((∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) | 
| 12 | 11 | sbimi 1778 | 
. . . . . . . . . 10
⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) | 
| 13 |   | sbim 1972 | 
. . . . . . . . . . . 12
⊢ ([𝑧 / 𝑦](𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ ([𝑧 / 𝑦]𝑥 ∈ 𝑦 → [𝑧 / 𝑦]suc 𝑥 ∈ 𝑦)) | 
| 14 |   | clelsb2 2302 | 
. . . . . . . . . . . . 13
⊢ ([𝑧 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) | 
| 15 |   | clelsb2 2302 | 
. . . . . . . . . . . . 13
⊢ ([𝑧 / 𝑦]suc 𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ 𝑧) | 
| 16 | 14, 15 | imbi12i 239 | 
. . . . . . . . . . . 12
⊢ (([𝑧 / 𝑦]𝑥 ∈ 𝑦 → [𝑧 / 𝑦]suc 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) | 
| 17 | 13, 16 | bitri 184 | 
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑦](𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) | 
| 18 | 17 | sbalv 2024 | 
. . . . . . . . . 10
⊢ ([𝑧 / 𝑦]∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) | 
| 19 | 12, 18 | sylib 122 | 
. . . . . . . . 9
⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) | 
| 20 | 8, 19 | sylbi 121 | 
. . . . . . . 8
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) | 
| 21 | 20 | 19.21bi 1572 | 
. . . . . . 7
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) | 
| 22 | 21 | adantl 277 | 
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) | 
| 23 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 ∈ V | 
| 24 |   | nfv 1542 | 
. . . . . . . . 9
⊢
Ⅎ𝑥∅
∈ 𝑦 | 
| 25 |   | nfra1 2528 | 
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦 | 
| 26 | 24, 25 | nfan 1579 | 
. . . . . . . 8
⊢
Ⅎ𝑥(∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) | 
| 27 | 26 | nfsab 2188 | 
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | 
| 28 | 23, 27 | nfan 1579 | 
. . . . . 6
⊢
Ⅎ𝑥(𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) | 
| 29 |   | nfcvd 2340 | 
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → Ⅎ𝑥𝐴) | 
| 30 |   | nfvd 1543 | 
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → Ⅎ𝑥(𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) | 
| 31 | 2, 7, 22, 28, 29, 30 | vtocldf 2815 | 
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) | 
| 32 | 31 | ralrimiva 2570 | 
. . . 4
⊢ (𝐴 ∈ V → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) | 
| 33 |   | ralim 2556 | 
. . . . 5
⊢
(∀𝑧 ∈
{𝑦 ∣ (∅ ∈
𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧) → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) | 
| 34 |   | elintg 3882 | 
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧)) | 
| 35 |   | sucexg 4534 | 
. . . . . . 7
⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | 
| 36 |   | elintg 3882 | 
. . . . . . 7
⊢ (suc
𝐴 ∈ V → (suc
𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) | 
| 37 | 35, 36 | syl 14 | 
. . . . . 6
⊢ (𝐴 ∈ V → (suc 𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) | 
| 38 | 34, 37 | imbi12d 234 | 
. . . . 5
⊢ (𝐴 ∈ V → ((𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) ↔ (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧))) | 
| 39 | 33, 38 | imbitrrid 156 | 
. . . 4
⊢ (𝐴 ∈ V → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧) → (𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}))) | 
| 40 | 32, 39 | mpd 13 | 
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)})) | 
| 41 |   | dfom3 4628 | 
. . . 4
⊢ ω =
∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | 
| 42 | 41 | eleq2i 2263 | 
. . 3
⊢ (𝐴 ∈ ω ↔ 𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)}) | 
| 43 | 41 | eleq2i 2263 | 
. . 3
⊢ (suc
𝐴 ∈ ω ↔ suc
𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)}) | 
| 44 | 40, 42, 43 | 3imtr4g 205 | 
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ ω → suc 𝐴 ∈
ω)) | 
| 45 | 1, 44 | mpcom 36 | 
1
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) |