ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2 GIF version

Theorem peano2 4572
Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano2 (𝐴 ∈ ω → suc 𝐴 ∈ ω)

Proof of Theorem peano2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2737 . 2 (𝐴 ∈ ω → 𝐴 ∈ V)
2 simpl 108 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝐴 ∈ V)
3 eleq1 2229 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
4 suceq 4380 . . . . . . . . 9 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
54eleq1d 2235 . . . . . . . 8 (𝑥 = 𝐴 → (suc 𝑥𝑧 ↔ suc 𝐴𝑧))
63, 5imbi12d 233 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
76adantl 275 . . . . . 6 (((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ∧ 𝑥 = 𝐴) → ((𝑥𝑧 → suc 𝑥𝑧) ↔ (𝐴𝑧 → suc 𝐴𝑧)))
8 df-clab 2152 . . . . . . . . 9 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦))
9 simpr 109 . . . . . . . . . . . 12 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥𝑦 suc 𝑥𝑦)
10 df-ral 2449 . . . . . . . . . . . 12 (∀𝑥𝑦 suc 𝑥𝑦 ↔ ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
119, 10sylib 121 . . . . . . . . . . 11 ((∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
1211sbimi 1752 . . . . . . . . . 10 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → [𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦))
13 sbim 1941 . . . . . . . . . . . 12 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ ([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦))
14 clelsb2 2272 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]𝑥𝑦𝑥𝑧)
15 clelsb2 2272 . . . . . . . . . . . . 13 ([𝑧 / 𝑦]suc 𝑥𝑦 ↔ suc 𝑥𝑧)
1614, 15imbi12i 238 . . . . . . . . . . . 12 (([𝑧 / 𝑦]𝑥𝑦 → [𝑧 / 𝑦]suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1713, 16bitri 183 . . . . . . . . . . 11 ([𝑧 / 𝑦](𝑥𝑦 → suc 𝑥𝑦) ↔ (𝑥𝑧 → suc 𝑥𝑧))
1817sbalv 1993 . . . . . . . . . 10 ([𝑧 / 𝑦]∀𝑥(𝑥𝑦 → suc 𝑥𝑦) ↔ ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
1912, 18sylib 121 . . . . . . . . 9 ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦) → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
208, 19sylbi 120 . . . . . . . 8 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → ∀𝑥(𝑥𝑧 → suc 𝑥𝑧))
212019.21bi 1546 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → (𝑥𝑧 → suc 𝑥𝑧))
2221adantl 275 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝑥𝑧 → suc 𝑥𝑧))
23 nfv 1516 . . . . . . 7 𝑥 𝐴 ∈ V
24 nfv 1516 . . . . . . . . 9 𝑥∅ ∈ 𝑦
25 nfra1 2497 . . . . . . . . 9 𝑥𝑥𝑦 suc 𝑥𝑦
2624, 25nfan 1553 . . . . . . . 8 𝑥(∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)
2726nfsab 2157 . . . . . . 7 𝑥 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
2823, 27nfan 1553 . . . . . 6 𝑥(𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
29 nfcvd 2309 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → 𝑥𝐴)
30 nfvd 1517 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → Ⅎ𝑥(𝐴𝑧 → suc 𝐴𝑧))
312, 7, 22, 28, 29, 30vtocldf 2777 . . . . 5 ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) → (𝐴𝑧 → suc 𝐴𝑧))
3231ralrimiva 2539 . . . 4 (𝐴 ∈ V → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧))
33 ralim 2525 . . . . 5 (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
34 elintg 3832 . . . . . 6 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧))
35 sucexg 4475 . . . . . . 7 (𝐴 ∈ V → suc 𝐴 ∈ V)
36 elintg 3832 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3735, 36syl 14 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧))
3834, 37imbi12d 233 . . . . 5 (𝐴 ∈ V → ((𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}) ↔ (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}𝐴𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}suc 𝐴𝑧)))
3933, 38syl5ibr 155 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} (𝐴𝑧 → suc 𝐴𝑧) → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})))
4032, 39mpd 13 . . 3 (𝐴 ∈ V → (𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)} → suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}))
41 dfom3 4569 . . . 4 ω = {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)}
4241eleq2i 2233 . . 3 (𝐴 ∈ ω ↔ 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4341eleq2i 2233 . . 3 (suc 𝐴 ∈ ω ↔ suc 𝐴 {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥𝑦 suc 𝑥𝑦)})
4440, 42, 433imtr4g 204 . 2 (𝐴 ∈ V → (𝐴 ∈ ω → suc 𝐴 ∈ ω))
451, 44mpcom 36 1 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  [wsb 1750  wcel 2136  {cab 2151  wral 2444  Vcvv 2726  c0 3409   cint 3824  suc csuc 4343  ωcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568
This theorem is referenced by:  peano5  4575  limom  4591  peano2b  4592  nnregexmid  4598  omsinds  4599  freccllem  6370  frecfcllem  6372  frecsuclem  6374  frecrdg  6376  nnacl  6448  nnacom  6452  nnmsucr  6456  nnsucsssuc  6460  nnaword  6479  1onn  6488  2onn  6489  3onn  6490  4onn  6491  nnaordex  6495  php5  6824  phplem4dom  6828  php5dom  6829  phplem4on  6833  dif1en  6845  findcard  6854  findcard2  6855  findcard2s  6856  infnfi  6861  unsnfi  6884  omp1eomlem  7059  ctmlemr  7073  infnninf  7088  infnninfOLD  7089  nnnninf  7090  nnnninfeq  7092  frec2uzrand  10340  frecuzrdgsuc  10349  frecuzrdgsuctlem  10358  frecfzennn  10361  hashunlem  10717  ennnfonelemk  12333  ennnfonelemg  12336  ennnfonelemkh  12345  ennnfonelemhf1o  12346  ennnfonelemex  12347  ennnfonelemrn  12352  ennnfonelemnn0  12355  ctinfomlemom  12360  0nninf  13884  nnsf  13885  peano4nninf  13886  nninfsellemdc  13890  nninfsellemsuc  13892  nninfself  13893  nninfsellemeqinf  13896
  Copyright terms: Public domain W3C validator