| Step | Hyp | Ref
| Expression |
| 1 | | elex 2774 |
. 2
⊢ (𝐴 ∈ ω → 𝐴 ∈ V) |
| 2 | | simpl 109 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → 𝐴 ∈ V) |
| 3 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝐴 ∈ 𝑧)) |
| 4 | | suceq 4437 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) |
| 5 | 4 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (suc 𝑥 ∈ 𝑧 ↔ suc 𝐴 ∈ 𝑧)) |
| 6 | 3, 5 | imbi12d 234 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧) ↔ (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧))) |
| 7 | 6 | adantl 277 |
. . . . . 6
⊢ (((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧) ↔ (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧))) |
| 8 | | df-clab 2183 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ [𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)) |
| 9 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) |
| 10 | | df-ral 2480 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦 ↔ ∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . . . 11
⊢ ((∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) |
| 12 | 11 | sbimi 1778 |
. . . . . . . . . 10
⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → [𝑧 / 𝑦]∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦)) |
| 13 | | sbim 1972 |
. . . . . . . . . . . 12
⊢ ([𝑧 / 𝑦](𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ ([𝑧 / 𝑦]𝑥 ∈ 𝑦 → [𝑧 / 𝑦]suc 𝑥 ∈ 𝑦)) |
| 14 | | clelsb2 2302 |
. . . . . . . . . . . . 13
⊢ ([𝑧 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) |
| 15 | | clelsb2 2302 |
. . . . . . . . . . . . 13
⊢ ([𝑧 / 𝑦]suc 𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ 𝑧) |
| 16 | 14, 15 | imbi12i 239 |
. . . . . . . . . . . 12
⊢ (([𝑧 / 𝑦]𝑥 ∈ 𝑦 → [𝑧 / 𝑦]suc 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
| 17 | 13, 16 | bitri 184 |
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑦](𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
| 18 | 17 | sbalv 2024 |
. . . . . . . . . 10
⊢ ([𝑧 / 𝑦]∀𝑥(𝑥 ∈ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
| 19 | 12, 18 | sylib 122 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑦](∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) → ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
| 20 | 8, 19 | sylbi 121 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∀𝑥(𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
| 21 | 20 | 19.21bi 1572 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
| 22 | 21 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → (𝑥 ∈ 𝑧 → suc 𝑥 ∈ 𝑧)) |
| 23 | | nfv 1542 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 ∈ V |
| 24 | | nfv 1542 |
. . . . . . . . 9
⊢
Ⅎ𝑥∅
∈ 𝑦 |
| 25 | | nfra1 2528 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦 |
| 26 | 24, 25 | nfan 1579 |
. . . . . . . 8
⊢
Ⅎ𝑥(∅
∈ 𝑦 ∧
∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) |
| 27 | 26 | nfsab 2188 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
| 28 | 23, 27 | nfan 1579 |
. . . . . 6
⊢
Ⅎ𝑥(𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) |
| 29 | | nfcvd 2340 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → Ⅎ𝑥𝐴) |
| 30 | | nfvd 1543 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → Ⅎ𝑥(𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) |
| 31 | 2, 7, 22, 28, 29, 30 | vtocldf 2815 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) → (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) |
| 32 | 31 | ralrimiva 2570 |
. . . 4
⊢ (𝐴 ∈ V → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧)) |
| 33 | | ralim 2556 |
. . . . 5
⊢
(∀𝑧 ∈
{𝑦 ∣ (∅ ∈
𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧) → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) |
| 34 | | elintg 3882 |
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧)) |
| 35 | | sucexg 4534 |
. . . . . . 7
⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) |
| 36 | | elintg 3882 |
. . . . . . 7
⊢ (suc
𝐴 ∈ V → (suc
𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) |
| 37 | 35, 36 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ V → (suc 𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} ↔ ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧)) |
| 38 | 34, 37 | imbi12d 234 |
. . . . 5
⊢ (𝐴 ∈ V → ((𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) ↔ (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}suc 𝐴 ∈ 𝑧))) |
| 39 | 33, 38 | imbitrrid 156 |
. . . 4
⊢ (𝐴 ∈ V → (∀𝑧 ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} (𝐴 ∈ 𝑧 → suc 𝐴 ∈ 𝑧) → (𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}))) |
| 40 | 32, 39 | mpd 13 |
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)} → suc 𝐴 ∈ ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)})) |
| 41 | | dfom3 4628 |
. . . 4
⊢ ω =
∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} |
| 42 | 41 | eleq2i 2263 |
. . 3
⊢ (𝐴 ∈ ω ↔ 𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)}) |
| 43 | 41 | eleq2i 2263 |
. . 3
⊢ (suc
𝐴 ∈ ω ↔ suc
𝐴 ∈ ∩ {𝑦
∣ (∅ ∈ 𝑦
∧ ∀𝑥 ∈
𝑦 suc 𝑥 ∈ 𝑦)}) |
| 44 | 40, 42, 43 | 3imtr4g 205 |
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ ω → suc 𝐴 ∈
ω)) |
| 45 | 1, 44 | mpcom 36 |
1
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) |