| Step | Hyp | Ref
 | Expression | 
| 1 |   | dfom3 4628 | 
. . 3
⊢ ω =
∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} | 
| 2 |   | peano1 4630 | 
. . . . . . . 8
⊢ ∅
∈ ω | 
| 3 |   | elin 3346 | 
. . . . . . . 8
⊢ (∅
∈ (ω ∩ 𝐴)
↔ (∅ ∈ ω ∧ ∅ ∈ 𝐴)) | 
| 4 | 2, 3 | mpbiran 942 | 
. . . . . . 7
⊢ (∅
∈ (ω ∩ 𝐴)
↔ ∅ ∈ 𝐴) | 
| 5 | 4 | biimpri 133 | 
. . . . . 6
⊢ (∅
∈ 𝐴 → ∅
∈ (ω ∩ 𝐴)) | 
| 6 |   | peano2 4631 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ω → suc 𝑥 ∈
ω) | 
| 7 | 6 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ω ∧ 𝑥 ∈ 𝐴) → suc 𝑥 ∈ ω) | 
| 8 | 7 | a1i 9 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ ω → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ((𝑥 ∈ ω ∧ 𝑥 ∈ 𝐴) → suc 𝑥 ∈ ω)) | 
| 9 |   | pm3.31 262 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ ω → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ((𝑥 ∈ ω ∧ 𝑥 ∈ 𝐴) → suc 𝑥 ∈ 𝐴)) | 
| 10 | 8, 9 | jcad 307 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ω → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ((𝑥 ∈ ω ∧ 𝑥 ∈ 𝐴) → (suc 𝑥 ∈ ω ∧ suc 𝑥 ∈ 𝐴))) | 
| 11 | 10 | alimi 1469 | 
. . . . . . . 8
⊢
(∀𝑥(𝑥 ∈ ω → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ∀𝑥((𝑥 ∈ ω ∧ 𝑥 ∈ 𝐴) → (suc 𝑥 ∈ ω ∧ suc 𝑥 ∈ 𝐴))) | 
| 12 |   | df-ral 2480 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ ω → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) | 
| 13 |   | elin 3346 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ (ω ∩ 𝐴) ↔ (𝑥 ∈ ω ∧ 𝑥 ∈ 𝐴)) | 
| 14 |   | elin 3346 | 
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ (ω ∩
𝐴) ↔ (suc 𝑥 ∈ ω ∧ suc 𝑥 ∈ 𝐴)) | 
| 15 | 13, 14 | imbi12i 239 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ (ω ∩ 𝐴) → suc 𝑥 ∈ (ω ∩ 𝐴)) ↔ ((𝑥 ∈ ω ∧ 𝑥 ∈ 𝐴) → (suc 𝑥 ∈ ω ∧ suc 𝑥 ∈ 𝐴))) | 
| 16 | 15 | albii 1484 | 
. . . . . . . 8
⊢
(∀𝑥(𝑥 ∈ (ω ∩ 𝐴) → suc 𝑥 ∈ (ω ∩ 𝐴)) ↔ ∀𝑥((𝑥 ∈ ω ∧ 𝑥 ∈ 𝐴) → (suc 𝑥 ∈ ω ∧ suc 𝑥 ∈ 𝐴))) | 
| 17 | 11, 12, 16 | 3imtr4i 201 | 
. . . . . . 7
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → ∀𝑥(𝑥 ∈ (ω ∩ 𝐴) → suc 𝑥 ∈ (ω ∩ 𝐴))) | 
| 18 |   | df-ral 2480 | 
. . . . . . 7
⊢
(∀𝑥 ∈
(ω ∩ 𝐴)suc 𝑥 ∈ (ω ∩ 𝐴) ↔ ∀𝑥(𝑥 ∈ (ω ∩ 𝐴) → suc 𝑥 ∈ (ω ∩ 𝐴))) | 
| 19 | 17, 18 | sylibr 134 | 
. . . . . 6
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → ∀𝑥 ∈ (ω ∩ 𝐴)suc 𝑥 ∈ (ω ∩ 𝐴)) | 
| 20 | 5, 19 | anim12i 338 | 
. . . . 5
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (∅ ∈ (ω ∩
𝐴) ∧ ∀𝑥 ∈ (ω ∩ 𝐴)suc 𝑥 ∈ (ω ∩ 𝐴))) | 
| 21 |   | omex 4629 | 
. . . . . . 7
⊢ ω
∈ V | 
| 22 | 21 | inex1 4167 | 
. . . . . 6
⊢ (ω
∩ 𝐴) ∈
V | 
| 23 |   | eleq2 2260 | 
. . . . . . 7
⊢ (𝑦 = (ω ∩ 𝐴) → (∅ ∈ 𝑦 ↔ ∅ ∈ (ω
∩ 𝐴))) | 
| 24 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑦 = (ω ∩ 𝐴) → (suc 𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ (ω ∩ 𝐴))) | 
| 25 | 24 | raleqbi1dv 2705 | 
. . . . . . 7
⊢ (𝑦 = (ω ∩ 𝐴) → (∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦 ↔ ∀𝑥 ∈ (ω ∩ 𝐴)suc 𝑥 ∈ (ω ∩ 𝐴))) | 
| 26 | 23, 25 | anbi12d 473 | 
. . . . . 6
⊢ (𝑦 = (ω ∩ 𝐴) → ((∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦) ↔ (∅ ∈ (ω ∩ 𝐴) ∧ ∀𝑥 ∈ (ω ∩ 𝐴)suc 𝑥 ∈ (ω ∩ 𝐴)))) | 
| 27 | 22, 26 | elab 2908 | 
. . . . 5
⊢ ((ω
∩ 𝐴) ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ↔ (∅ ∈ (ω ∩
𝐴) ∧ ∀𝑥 ∈ (ω ∩ 𝐴)suc 𝑥 ∈ (ω ∩ 𝐴))) | 
| 28 | 20, 27 | sylibr 134 | 
. . . 4
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (ω ∩ 𝐴) ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)}) | 
| 29 |   | intss1 3889 | 
. . . 4
⊢ ((ω
∩ 𝐴) ∈ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} → ∩ {𝑦 ∣ (∅ ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ⊆ (ω ∩ 𝐴)) | 
| 30 | 28, 29 | syl 14 | 
. . 3
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ∩
{𝑦 ∣ (∅ ∈
𝑦 ∧ ∀𝑥 ∈ 𝑦 suc 𝑥 ∈ 𝑦)} ⊆ (ω ∩ 𝐴)) | 
| 31 | 1, 30 | eqsstrid 3229 | 
. 2
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ (ω ∩
𝐴)) | 
| 32 |   | ssid 3203 | 
. . . 4
⊢ ω
⊆ ω | 
| 33 | 32 | biantrur 303 | 
. . 3
⊢ (ω
⊆ 𝐴 ↔ (ω
⊆ ω ∧ ω ⊆ 𝐴)) | 
| 34 |   | ssin 3385 | 
. . 3
⊢ ((ω
⊆ ω ∧ ω ⊆ 𝐴) ↔ ω ⊆ (ω ∩
𝐴)) | 
| 35 | 33, 34 | bitri 184 | 
. 2
⊢ (ω
⊆ 𝐴 ↔ ω
⊆ (ω ∩ 𝐴)) | 
| 36 | 31, 35 | sylibr 134 | 
1
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |