Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imim2i | GIF version |
Description: Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | a2i 11 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 59 imim3i 61 imim21b 251 jcab 593 pm4.78i 772 pm3.48 775 con1dc 842 jadc 849 pm5.6r 913 exbir 1413 19.21h 1534 nford 1544 19.21ht 1558 exim 1576 i19.24 1616 equsexd 1706 equvini 1735 nfexd 1738 sbimi 1741 sbcof2 1787 nfsb2or 1814 mopick 2081 r19.32r 2600 r19.36av 2605 ceqsalt 2735 vtoclgft 2759 spcgft 2786 spcegft 2788 elab3gf 2858 mo2icl 2887 euind 2895 reu6 2897 reuind 2913 sbciegft 2963 ssddif 3337 dfiin2g 3878 invdisj 3955 ordunisuc2r 4467 fnoprabg 5912 caucvgsr 7701 rexanre 11097 tgcnp 12556 lmcvg 12564 elabgft1 13298 bj-nntrans 13472 |
Copyright terms: Public domain | W3C validator |