![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imim2i | GIF version |
Description: Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | a2i 11 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 59 imim3i 61 imim21b 253 jcab 603 pm4.78i 783 pm3.48 786 con1dc 857 jadc 864 pm5.6r 928 exbir 1447 19.21h 1568 nford 1578 19.21ht 1592 exim 1610 i19.24 1650 equsexd 1740 equvini 1769 nfexd 1772 sbimi 1775 sbcof2 1821 nfsb2or 1848 mopick 2120 r19.32r 2640 r19.36av 2645 ceqsalt 2786 vtoclgft 2811 spcgft 2838 spcegft 2840 elab3gf 2911 mo2icl 2940 euind 2948 reu6 2950 reuind 2966 sbciegft 3017 ssddif 3394 dfiin2g 3946 invdisj 4024 ordunisuc2r 4547 fnoprabg 6020 caucvgsr 7864 rexanre 11367 tgcnp 14388 lmcvg 14396 elabgft1 15340 bj-nntrans 15513 |
Copyright terms: Public domain | W3C validator |