| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim2i | GIF version | ||
| Description: Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imim2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | 2 | a2i 11 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim12i 59 imim3i 61 imim21b 253 jcab 603 pm4.78i 784 pm3.48 787 con1dc 858 jadc 865 pm5.6r 929 exbir 1457 19.21h 1581 nford 1591 19.21ht 1605 exim 1623 i19.24 1663 equsexd 1753 equvini 1782 nfexd 1785 sbimi 1788 sbcof2 1834 nfsb2or 1861 mopick 2133 r19.32r 2653 r19.36av 2658 ceqsalt 2800 vtoclgft 2825 spcgft 2854 spcegft 2856 elab3gf 2927 mo2icl 2956 euind 2964 reu6 2966 reuind 2982 sbciegft 3033 ssddif 3411 dfiin2g 3965 invdisj 4043 ordunisuc2r 4569 fnoprabg 6058 caucvgsr 7930 rexanre 11601 tgcnp 14751 lmcvg 14759 elabgft1 15848 bj-nntrans 16021 |
| Copyright terms: Public domain | W3C validator |