| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim2i | GIF version | ||
| Description: Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imim2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | 2 | a2i 11 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim12i 59 imim3i 61 imim21b 253 jcab 605 pm4.78i 787 pm3.48 790 con1dc 861 jadc 868 pm5.6r 932 exbir 1479 19.21h 1603 nford 1613 19.21ht 1627 exim 1645 i19.24 1685 equsexd 1775 equvini 1804 nfexd 1807 sbimi 1810 sbcof2 1856 nfsb2or 1883 mopick 2156 r19.32r 2677 r19.36av 2682 ceqsalt 2826 vtoclgft 2851 spcgft 2880 spcegft 2882 elab3gf 2953 mo2icl 2982 euind 2990 reu6 2992 reuind 3008 sbciegft 3059 ssddif 3438 dfiin2g 3997 invdisj 4075 ordunisuc2r 4603 fnoprabg 6096 caucvgsr 7977 rexanre 11717 tgcnp 14868 lmcvg 14876 elabgft1 16072 bj-nntrans 16244 |
| Copyright terms: Public domain | W3C validator |