Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imim2i | GIF version |
Description: Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | a2i 11 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 59 imim3i 61 imim21b 251 jcab 593 pm4.78i 772 pm3.48 775 con1dc 846 jadc 853 pm5.6r 917 exbir 1424 19.21h 1545 nford 1555 19.21ht 1569 exim 1587 i19.24 1627 equsexd 1717 equvini 1746 nfexd 1749 sbimi 1752 sbcof2 1798 nfsb2or 1825 mopick 2092 r19.32r 2612 r19.36av 2617 ceqsalt 2752 vtoclgft 2776 spcgft 2803 spcegft 2805 elab3gf 2876 mo2icl 2905 euind 2913 reu6 2915 reuind 2931 sbciegft 2981 ssddif 3356 dfiin2g 3899 invdisj 3976 ordunisuc2r 4491 fnoprabg 5943 caucvgsr 7743 rexanre 11162 tgcnp 12859 lmcvg 12867 elabgft1 13669 bj-nntrans 13843 |
Copyright terms: Public domain | W3C validator |