ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impexp GIF version

Theorem 3impexp 1425
Description: impexp 261 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
3impexp (((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))

Proof of Theorem 3impexp
StepHypRef Expression
1 id 19 . . 3 (((𝜑𝜓𝜒) → 𝜃) → ((𝜑𝜓𝜒) → 𝜃))
213expd 1214 . 2 (((𝜑𝜓𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒𝜃))))
3 id 19 . . 3 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜓 → (𝜒𝜃))))
433impd 1211 . 2 ((𝜑 → (𝜓 → (𝜒𝜃))) → ((𝜑𝜓𝜒) → 𝜃))
52, 4impbii 125 1 (((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  3impexpbicom  1426
  Copyright terms: Public domain W3C validator