Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impexp | GIF version |
Description: impexp 261 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
3impexp | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | 3expd 1214 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
3 | id 19 | . . 3 ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | |
4 | 3 | 3impd 1211 | . 2 ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) |
5 | 2, 4 | impbii 125 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3impexpbicom 1426 |
Copyright terms: Public domain | W3C validator |