ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facdiv GIF version

Theorem facdiv 10812
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)

Proof of Theorem facdiv
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4034 . . . . 5 (𝑗 = 0 → (𝑁𝑗𝑁 ≤ 0))
2 fveq2 5555 . . . . . . 7 (𝑗 = 0 → (!‘𝑗) = (!‘0))
32oveq1d 5934 . . . . . 6 (𝑗 = 0 → ((!‘𝑗) / 𝑁) = ((!‘0) / 𝑁))
43eleq1d 2262 . . . . 5 (𝑗 = 0 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘0) / 𝑁) ∈ ℕ))
51, 4imbi12d 234 . . . 4 (𝑗 = 0 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ)))
65imbi2d 230 . . 3 (𝑗 = 0 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))))
7 breq2 4034 . . . . 5 (𝑗 = 𝑘 → (𝑁𝑗𝑁𝑘))
8 fveq2 5555 . . . . . . 7 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98oveq1d 5934 . . . . . 6 (𝑗 = 𝑘 → ((!‘𝑗) / 𝑁) = ((!‘𝑘) / 𝑁))
109eleq1d 2262 . . . . 5 (𝑗 = 𝑘 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑘) / 𝑁) ∈ ℕ))
117, 10imbi12d 234 . . . 4 (𝑗 = 𝑘 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)))
1211imbi2d 230 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ))))
13 breq2 4034 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁𝑗𝑁 ≤ (𝑘 + 1)))
14 fveq2 5555 . . . . . . 7 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1514oveq1d 5934 . . . . . 6 (𝑗 = (𝑘 + 1) → ((!‘𝑗) / 𝑁) = ((!‘(𝑘 + 1)) / 𝑁))
1615eleq1d 2262 . . . . 5 (𝑗 = (𝑘 + 1) → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
1713, 16imbi12d 234 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ)))
1817imbi2d 230 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
19 breq2 4034 . . . . 5 (𝑗 = 𝑀 → (𝑁𝑗𝑁𝑀))
20 fveq2 5555 . . . . . . 7 (𝑗 = 𝑀 → (!‘𝑗) = (!‘𝑀))
2120oveq1d 5934 . . . . . 6 (𝑗 = 𝑀 → ((!‘𝑗) / 𝑁) = ((!‘𝑀) / 𝑁))
2221eleq1d 2262 . . . . 5 (𝑗 = 𝑀 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑀) / 𝑁) ∈ ℕ))
2319, 22imbi12d 234 . . . 4 (𝑗 = 𝑀 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
2423imbi2d 230 . . 3 (𝑗 = 𝑀 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ))))
25 nngt0 9009 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
26 0z 9331 . . . . . 6 0 ∈ ℤ
27 nnz 9339 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
28 zltnle 9366 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
2926, 27, 28sylancr 414 . . . . 5 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
3025, 29mpbid 147 . . . 4 (𝑁 ∈ ℕ → ¬ 𝑁 ≤ 0)
3130pm2.21d 620 . . 3 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))
32 peano2nn0 9283 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3332nn0zd 9440 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℤ)
34 zleloe 9367 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
3527, 33, 34syl2an 289 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
36 nnnn0 9250 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
37 nn0leltp1 9383 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
3836, 37sylan 283 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
39 nn0p1nn 9282 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
40 nnmulcl 9005 . . . . . . . . . . . . . . . . . . 19 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
4139, 40sylan2 286 . . . . . . . . . . . . . . . . . 18 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
4241expcom 116 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
4342adantl 277 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
44 faccl 10809 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4544nncnd 8998 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
4645adantl 277 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
4732nn0cnd 9298 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
4847adantl 277 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
49 nncn 8992 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
5049adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
51 nnap0 9013 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 # 0)
5251adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 # 0)
5346, 48, 50, 52div23apd 8849 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) = (((!‘𝑘) / 𝑁) · (𝑘 + 1)))
5453eleq1d 2262 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
5543, 54sylibrd 169 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
5655imim2d 54 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁𝑘 → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5756com23 78 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5838, 57sylbird 170 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 < (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5946, 50, 52divcanap4d 8817 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) = (!‘𝑘))
6044adantl 277 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
6159, 60eqeltrd 2270 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ)
62 oveq2 5927 . . . . . . . . . . . . . . . 16 (𝑁 = (𝑘 + 1) → ((!‘𝑘) · 𝑁) = ((!‘𝑘) · (𝑘 + 1)))
6362oveq1d 5934 . . . . . . . . . . . . . . 15 (𝑁 = (𝑘 + 1) → (((!‘𝑘) · 𝑁) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
6463eleq1d 2262 . . . . . . . . . . . . . 14 (𝑁 = (𝑘 + 1) → ((((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6561, 64syl5ibcom 155 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6665a1dd 48 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6758, 66jaod 718 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1)) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6835, 67sylbid 150 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6968ex 115 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7069com34 83 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7170com12 30 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7271imp4d 352 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
73 facp1 10804 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7473oveq1d 5934 . . . . . . 7 (𝑘 ∈ ℕ0 → ((!‘(𝑘 + 1)) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
7574eleq1d 2262 . . . . . 6 (𝑘 ∈ ℕ0 → (((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
7672, 75sylibrd 169 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
7776exp4d 369 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
7877a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)) → (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
796, 12, 18, 24, 31, 78nn0ind 9434 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
80793imp 1195 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057   # cap 8602   / cdiv 8693  cn 8984  0cn0 9243  cz 9320  !cfa 10799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-fac 10800
This theorem is referenced by:  facndiv  10813  eirraplem  11923
  Copyright terms: Public domain W3C validator