ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facdiv GIF version

Theorem facdiv 10672
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)

Proof of Theorem facdiv
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3993 . . . . 5 (𝑗 = 0 → (𝑁𝑗𝑁 ≤ 0))
2 fveq2 5496 . . . . . . 7 (𝑗 = 0 → (!‘𝑗) = (!‘0))
32oveq1d 5868 . . . . . 6 (𝑗 = 0 → ((!‘𝑗) / 𝑁) = ((!‘0) / 𝑁))
43eleq1d 2239 . . . . 5 (𝑗 = 0 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘0) / 𝑁) ∈ ℕ))
51, 4imbi12d 233 . . . 4 (𝑗 = 0 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ)))
65imbi2d 229 . . 3 (𝑗 = 0 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))))
7 breq2 3993 . . . . 5 (𝑗 = 𝑘 → (𝑁𝑗𝑁𝑘))
8 fveq2 5496 . . . . . . 7 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98oveq1d 5868 . . . . . 6 (𝑗 = 𝑘 → ((!‘𝑗) / 𝑁) = ((!‘𝑘) / 𝑁))
109eleq1d 2239 . . . . 5 (𝑗 = 𝑘 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑘) / 𝑁) ∈ ℕ))
117, 10imbi12d 233 . . . 4 (𝑗 = 𝑘 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)))
1211imbi2d 229 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ))))
13 breq2 3993 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁𝑗𝑁 ≤ (𝑘 + 1)))
14 fveq2 5496 . . . . . . 7 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1514oveq1d 5868 . . . . . 6 (𝑗 = (𝑘 + 1) → ((!‘𝑗) / 𝑁) = ((!‘(𝑘 + 1)) / 𝑁))
1615eleq1d 2239 . . . . 5 (𝑗 = (𝑘 + 1) → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
1713, 16imbi12d 233 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ)))
1817imbi2d 229 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
19 breq2 3993 . . . . 5 (𝑗 = 𝑀 → (𝑁𝑗𝑁𝑀))
20 fveq2 5496 . . . . . . 7 (𝑗 = 𝑀 → (!‘𝑗) = (!‘𝑀))
2120oveq1d 5868 . . . . . 6 (𝑗 = 𝑀 → ((!‘𝑗) / 𝑁) = ((!‘𝑀) / 𝑁))
2221eleq1d 2239 . . . . 5 (𝑗 = 𝑀 → (((!‘𝑗) / 𝑁) ∈ ℕ ↔ ((!‘𝑀) / 𝑁) ∈ ℕ))
2319, 22imbi12d 233 . . . 4 (𝑗 = 𝑀 → ((𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ) ↔ (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
2423imbi2d 229 . . 3 (𝑗 = 𝑀 → ((𝑁 ∈ ℕ → (𝑁𝑗 → ((!‘𝑗) / 𝑁) ∈ ℕ)) ↔ (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ))))
25 nngt0 8903 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
26 0z 9223 . . . . . 6 0 ∈ ℤ
27 nnz 9231 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
28 zltnle 9258 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
2926, 27, 28sylancr 412 . . . . 5 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
3025, 29mpbid 146 . . . 4 (𝑁 ∈ ℕ → ¬ 𝑁 ≤ 0)
3130pm2.21d 614 . . 3 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ((!‘0) / 𝑁) ∈ ℕ))
32 peano2nn0 9175 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3332nn0zd 9332 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℤ)
34 zleloe 9259 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
3527, 33, 34syl2an 287 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) ↔ (𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1))))
36 nnnn0 9142 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
37 nn0leltp1 9275 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
3836, 37sylan 281 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘𝑁 < (𝑘 + 1)))
39 nn0p1nn 9174 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
40 nnmulcl 8899 . . . . . . . . . . . . . . . . . . 19 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
4139, 40sylan2 284 . . . . . . . . . . . . . . . . . 18 ((((!‘𝑘) / 𝑁) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ)
4241expcom 115 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
4342adantl 275 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
44 faccl 10669 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4544nncnd 8892 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
4645adantl 275 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
4732nn0cnd 9190 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
4847adantl 275 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
49 nncn 8886 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
5049adantr 274 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
51 nnap0 8907 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 # 0)
5251adantr 274 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑁 # 0)
5346, 48, 50, 52div23apd 8745 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) = (((!‘𝑘) / 𝑁) · (𝑘 + 1)))
5453eleq1d 2239 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) / 𝑁) · (𝑘 + 1)) ∈ ℕ))
5543, 54sylibrd 168 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) / 𝑁) ∈ ℕ → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
5655imim2d 54 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁𝑘 → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5756com23 78 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5838, 57sylbird 169 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 < (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
5946, 50, 52divcanap4d 8713 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) = (!‘𝑘))
6044adantl 275 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
6159, 60eqeltrd 2247 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ)
62 oveq2 5861 . . . . . . . . . . . . . . . 16 (𝑁 = (𝑘 + 1) → ((!‘𝑘) · 𝑁) = ((!‘𝑘) · (𝑘 + 1)))
6362oveq1d 5868 . . . . . . . . . . . . . . 15 (𝑁 = (𝑘 + 1) → (((!‘𝑘) · 𝑁) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
6463eleq1d 2239 . . . . . . . . . . . . . 14 (𝑁 = (𝑘 + 1) → ((((!‘𝑘) · 𝑁) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6561, 64syl5ibcom 154 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
6665a1dd 48 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 = (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6758, 66jaod 712 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 < (𝑘 + 1) ∨ 𝑁 = (𝑘 + 1)) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6835, 67sylbid 149 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ)))
6968ex 114 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → (𝑁 ≤ (𝑘 + 1) → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7069com34 83 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ0 → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7170com12 30 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))))
7271imp4d 350 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
73 facp1 10664 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7473oveq1d 5868 . . . . . . 7 (𝑘 ∈ ℕ0 → ((!‘(𝑘 + 1)) / 𝑁) = (((!‘𝑘) · (𝑘 + 1)) / 𝑁))
7574eleq1d 2239 . . . . . 6 (𝑘 ∈ ℕ0 → (((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ ↔ (((!‘𝑘) · (𝑘 + 1)) / 𝑁) ∈ ℕ))
7672, 75sylibrd 168 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ ∧ ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) ∧ 𝑁 ≤ (𝑘 + 1))) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))
7776exp4d 367 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ → ((𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ) → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
7877a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ → (𝑁𝑘 → ((!‘𝑘) / 𝑁) ∈ ℕ)) → (𝑁 ∈ ℕ → (𝑁 ≤ (𝑘 + 1) → ((!‘(𝑘 + 1)) / 𝑁) ∈ ℕ))))
796, 12, 18, 24, 31, 78nn0ind 9326 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁𝑀 → ((!‘𝑀) / 𝑁) ∈ ℕ)))
80793imp 1188 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955   # cap 8500   / cdiv 8589  cn 8878  0cn0 9135  cz 9212  !cfa 10659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-fac 10660
This theorem is referenced by:  facndiv  10673  eirraplem  11739
  Copyright terms: Public domain W3C validator