ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem1 GIF version

Theorem infpnlem1 12877
Description: Lemma for infpn 12879. The smallest divisor (greater than 1) 𝑀 of 𝑁! + 1 is a prime greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Distinct variable groups:   𝑗,𝑁   𝑗,𝑀   𝑗,𝐾

Proof of Theorem infpnlem1
StepHypRef Expression
1 nnz 9461 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
21ad2antrr 488 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → 𝑁 ∈ ℤ)
3 nnz 9461 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
43ad2antlr 489 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → 𝑀 ∈ ℤ)
5 zdclt 9520 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
62, 4, 5syl2anc 411 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → DECID 𝑁 < 𝑀)
7 nnre 9113 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
8 nnre 9113 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
9 lenlt 8218 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
107, 8, 9syl2anr 290 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
1110adantr 276 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
12 nnnn0 9372 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 facndiv 10956 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
14 infpnlem.1 . . . . . . . . . . 11 𝐾 = ((!‘𝑁) + 1)
1514oveq1i 6010 . . . . . . . . . 10 (𝐾 / 𝑀) = (((!‘𝑁) + 1) / 𝑀)
16 nnz 9461 . . . . . . . . . 10 ((𝐾 / 𝑀) ∈ ℕ → (𝐾 / 𝑀) ∈ ℤ)
1715, 16eqeltrrid 2317 . . . . . . . . 9 ((𝐾 / 𝑀) ∈ ℕ → (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
1813, 17nsyl 631 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
1912, 18sylanl1 402 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
2019expr 375 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 → ¬ (𝐾 / 𝑀) ∈ ℕ))
2111, 20sylbird 170 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (¬ 𝑁 < 𝑀 → ¬ (𝐾 / 𝑀) ∈ ℕ))
22 condc 858 . . . . 5 (DECID 𝑁 < 𝑀 → ((¬ 𝑁 < 𝑀 → ¬ (𝐾 / 𝑀) ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → 𝑁 < 𝑀)))
236, 21, 22sylc 62 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → ((𝐾 / 𝑀) ∈ ℕ → 𝑁 < 𝑀))
2423expimpd 363 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → 𝑁 < 𝑀))
2524adantrd 279 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → 𝑁 < 𝑀))
2612faccld 10953 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
2726peano2nnd 9121 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
2814, 27eqeltrid 2316 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
2928nncnd 9120 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝐾 ∈ ℂ)
30 nndivtr 9148 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (𝐾 / 𝑗) ∈ ℕ)
3130ex 115 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
32313com13 1232 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
33323expa 1227 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
3429, 33sylanl1 402 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
3534adantrl 478 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
36 nnre 9113 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
37 letri3 8223 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3836, 7, 37syl2an 289 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3938biimprd 158 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑗𝑀𝑀𝑗) → 𝑗 = 𝑀))
4039exp4b 367 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑀𝑗𝑗 = 𝑀))))
4140com3l 81 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑗 ∈ ℕ → (𝑀𝑗𝑗 = 𝑀))))
4241imp32 257 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
4342adantll 476 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
4443imim2d 54 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
4544com23 78 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4635, 45sylan2d 294 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4746exp4d 369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (1 < 𝑗 → ((𝑀 / 𝑗) ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4847com24 87 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4948exp32 365 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗𝑀 → (𝑗 ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
5049com24 87 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (𝑗 ∈ ℕ → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
5150imp31 256 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
5251com14 88 . . . . . . . . 9 (1 < 𝑗 → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
53523imp 1217 . . . . . . . 8 ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
5453com3l 81 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5554ralimdva 2597 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5655ex 115 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5756adantld 278 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5857impd 254 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
59 prime 9542 . . . 4 (𝑀 ∈ ℕ → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
6059adantl 277 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
6158, 60sylibrd 169 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀))))
6225, 61jcad 307 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wral 2508   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  1c1 7996   + caddc 7998   < clt 8177  cle 8178   / cdiv 8815  cn 9106  0cn0 9365  cz 9442  !cfa 10942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-fac 10943
This theorem is referenced by:  infpnlem2  12878
  Copyright terms: Public domain W3C validator