ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem1 GIF version

Theorem infpnlem1 12391
Description: Lemma for infpn 12393. The smallest divisor (greater than 1) 𝑀 of 𝑁! + 1 is a prime greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Distinct variable groups:   𝑗,𝑁   𝑗,𝑀   𝑗,𝐾

Proof of Theorem infpnlem1
StepHypRef Expression
1 nnz 9302 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
21ad2antrr 488 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → 𝑁 ∈ ℤ)
3 nnz 9302 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
43ad2antlr 489 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → 𝑀 ∈ ℤ)
5 zdclt 9360 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
62, 4, 5syl2anc 411 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → DECID 𝑁 < 𝑀)
7 nnre 8956 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
8 nnre 8956 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
9 lenlt 8063 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
107, 8, 9syl2anr 290 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
1110adantr 276 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
12 nnnn0 9213 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 facndiv 10751 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
14 infpnlem.1 . . . . . . . . . . 11 𝐾 = ((!‘𝑁) + 1)
1514oveq1i 5906 . . . . . . . . . 10 (𝐾 / 𝑀) = (((!‘𝑁) + 1) / 𝑀)
16 nnz 9302 . . . . . . . . . 10 ((𝐾 / 𝑀) ∈ ℕ → (𝐾 / 𝑀) ∈ ℤ)
1715, 16eqeltrrid 2277 . . . . . . . . 9 ((𝐾 / 𝑀) ∈ ℕ → (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
1813, 17nsyl 629 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
1912, 18sylanl1 402 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
2019expr 375 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 → ¬ (𝐾 / 𝑀) ∈ ℕ))
2111, 20sylbird 170 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (¬ 𝑁 < 𝑀 → ¬ (𝐾 / 𝑀) ∈ ℕ))
22 condc 854 . . . . 5 (DECID 𝑁 < 𝑀 → ((¬ 𝑁 < 𝑀 → ¬ (𝐾 / 𝑀) ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → 𝑁 < 𝑀)))
236, 21, 22sylc 62 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → ((𝐾 / 𝑀) ∈ ℕ → 𝑁 < 𝑀))
2423expimpd 363 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → 𝑁 < 𝑀))
2524adantrd 279 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → 𝑁 < 𝑀))
2612faccld 10748 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
2726peano2nnd 8964 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
2814, 27eqeltrid 2276 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
2928nncnd 8963 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝐾 ∈ ℂ)
30 nndivtr 8991 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (𝐾 / 𝑗) ∈ ℕ)
3130ex 115 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
32313com13 1210 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
33323expa 1205 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
3429, 33sylanl1 402 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
3534adantrl 478 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
36 nnre 8956 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
37 letri3 8068 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3836, 7, 37syl2an 289 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3938biimprd 158 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑗𝑀𝑀𝑗) → 𝑗 = 𝑀))
4039exp4b 367 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑀𝑗𝑗 = 𝑀))))
4140com3l 81 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑗 ∈ ℕ → (𝑀𝑗𝑗 = 𝑀))))
4241imp32 257 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
4342adantll 476 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
4443imim2d 54 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
4544com23 78 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4635, 45sylan2d 294 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4746exp4d 369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (1 < 𝑗 → ((𝑀 / 𝑗) ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4847com24 87 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4948exp32 365 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗𝑀 → (𝑗 ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
5049com24 87 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (𝑗 ∈ ℕ → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
5150imp31 256 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
5251com14 88 . . . . . . . . 9 (1 < 𝑗 → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
53523imp 1195 . . . . . . . 8 ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
5453com3l 81 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5554ralimdva 2557 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5655ex 115 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5756adantld 278 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5857impd 254 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
59 prime 9382 . . . 4 (𝑀 ∈ ℕ → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
6059adantl 277 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
6158, 60sylibrd 169 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀))))
6225, 61jcad 307 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2160  wral 2468   class class class wbr 4018  cfv 5235  (class class class)co 5896  cc 7839  cr 7840  1c1 7842   + caddc 7844   < clt 8022  cle 8023   / cdiv 8659  cn 8949  0cn0 9206  cz 9283  !cfa 10737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-seqfrec 10477  df-fac 10738
This theorem is referenced by:  infpnlem2  12392
  Copyright terms: Public domain W3C validator