ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem9 GIF version

Theorem tfrlem9 6428
Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eldm2g 4893 . . 3 (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ↔ ∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹)))
21ibi 176 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹))
3 df-recs 6414 . . . . . 6 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
43eleq2i 2274 . . . . 5 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) ↔ ⟨𝐵, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))})
5 eluniab 3876 . . . . 5 (⟨𝐵, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))} ↔ ∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
64, 5bitri 184 . . . 4 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) ↔ ∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
7 fnop 5398 . . . . . . . . . . . . . 14 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → 𝐵𝑥)
8 rspe 2557 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
9 tfrlem.1 . . . . . . . . . . . . . . . . . 18 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
109abeq2i 2318 . . . . . . . . . . . . . . . . 17 (𝑓𝐴 ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
11 elssuni 3892 . . . . . . . . . . . . . . . . . 18 (𝑓𝐴𝑓 𝐴)
129recsfval 6424 . . . . . . . . . . . . . . . . . 18 recs(𝐹) = 𝐴
1311, 12sseqtrrdi 3250 . . . . . . . . . . . . . . . . 17 (𝑓𝐴𝑓 ⊆ recs(𝐹))
1410, 13sylbir 135 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → 𝑓 ⊆ recs(𝐹))
158, 14syl 14 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → 𝑓 ⊆ recs(𝐹))
16 fveq2 5599 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝑓𝑦) = (𝑓𝐵))
17 reseq2 4973 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐵 → (𝑓𝑦) = (𝑓𝐵))
1817fveq2d 5603 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝐵)))
1916, 18eqeq12d 2222 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝐵 → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
2019rspcv 2880 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
21 fndm 5392 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
2221eleq2d 2277 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓𝐵𝑥))
239tfrlem7 6426 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Fun recs(𝐹)
24 funssfv 5625 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2523, 24mp3an1 1337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2625adantrl 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2721eleq1d 2276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn 𝑥 → (dom 𝑓 ∈ On ↔ 𝑥 ∈ On))
28 onelss 4452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑓 ∈ On → (𝐵 ∈ dom 𝑓𝐵 ⊆ dom 𝑓))
2927, 28biimtrrdi 164 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓𝐵 ⊆ dom 𝑓)))
3029imp31 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → 𝐵 ⊆ dom 𝑓)
31 fun2ssres 5333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (recs(𝐹) ↾ 𝐵) = (𝑓𝐵))
3231fveq2d 5603 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3323, 32mp3an1 1337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3430, 33sylan2 286 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3526, 34eqeq12d 2222 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → ((recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)) ↔ (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
3635exbiri 382 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ⊆ recs(𝐹) → (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
3736com3l 81 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
3837exp31 364 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
3938com34 83 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → (𝑥 ∈ On → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝐵 ∈ dom 𝑓 → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4039com24 87 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4122, 40sylbird 170 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fn 𝑥 → (𝐵𝑥 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4241com3l 81 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4320, 42syld 45 . . . . . . . . . . . . . . . . 17 (𝐵𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4443com24 87 . . . . . . . . . . . . . . . 16 (𝐵𝑥 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4544imp4d 352 . . . . . . . . . . . . . . 15 (𝐵𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
4615, 45mpdi 43 . . . . . . . . . . . . . 14 (𝐵𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
477, 46syl 14 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
4847exp4d 369 . . . . . . . . . . . 12 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
4948ex 115 . . . . . . . . . . 11 (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
5049com4r 86 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
5150pm2.43i 49 . . . . . . . . 9 (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
5251com3l 81 . . . . . . . 8 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
5352imp4a 349 . . . . . . 7 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
5453rexlimdv 2624 . . . . . 6 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
5554imp 124 . . . . 5 ((⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
5655exlimiv 1622 . . . 4 (∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
576, 56sylbi 121 . . 3 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
5857exlimiv 1622 . 2 (∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
592, 58syl 14 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1516  wcel 2178  {cab 2193  wral 2486  wrex 2487  wss 3174  cop 3646   cuni 3864  Oncon0 4428  dom cdm 4693  cres 4695  Fun wfun 5284   Fn wfn 5285  cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-recs 6414
This theorem is referenced by:  tfr2a  6430  tfrlemiubacc  6439  tfr1onlemubacc  6455  tfrcllemubacc  6468
  Copyright terms: Public domain W3C validator