ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem9 GIF version

Theorem tfrlem9 6405
Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eldm2g 4874 . . 3 (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ↔ ∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹)))
21ibi 176 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹))
3 df-recs 6391 . . . . . 6 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
43eleq2i 2272 . . . . 5 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) ↔ ⟨𝐵, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))})
5 eluniab 3862 . . . . 5 (⟨𝐵, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))} ↔ ∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
64, 5bitri 184 . . . 4 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) ↔ ∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
7 fnop 5379 . . . . . . . . . . . . . 14 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → 𝐵𝑥)
8 rspe 2555 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
9 tfrlem.1 . . . . . . . . . . . . . . . . . 18 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
109abeq2i 2316 . . . . . . . . . . . . . . . . 17 (𝑓𝐴 ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
11 elssuni 3878 . . . . . . . . . . . . . . . . . 18 (𝑓𝐴𝑓 𝐴)
129recsfval 6401 . . . . . . . . . . . . . . . . . 18 recs(𝐹) = 𝐴
1311, 12sseqtrrdi 3242 . . . . . . . . . . . . . . . . 17 (𝑓𝐴𝑓 ⊆ recs(𝐹))
1410, 13sylbir 135 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → 𝑓 ⊆ recs(𝐹))
158, 14syl 14 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → 𝑓 ⊆ recs(𝐹))
16 fveq2 5576 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝑓𝑦) = (𝑓𝐵))
17 reseq2 4954 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐵 → (𝑓𝑦) = (𝑓𝐵))
1817fveq2d 5580 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝐵)))
1916, 18eqeq12d 2220 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝐵 → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
2019rspcv 2873 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
21 fndm 5373 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
2221eleq2d 2275 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓𝐵𝑥))
239tfrlem7 6403 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Fun recs(𝐹)
24 funssfv 5602 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2523, 24mp3an1 1337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2625adantrl 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2721eleq1d 2274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn 𝑥 → (dom 𝑓 ∈ On ↔ 𝑥 ∈ On))
28 onelss 4434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑓 ∈ On → (𝐵 ∈ dom 𝑓𝐵 ⊆ dom 𝑓))
2927, 28biimtrrdi 164 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓𝐵 ⊆ dom 𝑓)))
3029imp31 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → 𝐵 ⊆ dom 𝑓)
31 fun2ssres 5314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (recs(𝐹) ↾ 𝐵) = (𝑓𝐵))
3231fveq2d 5580 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3323, 32mp3an1 1337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3430, 33sylan2 286 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3526, 34eqeq12d 2220 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → ((recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)) ↔ (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
3635exbiri 382 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ⊆ recs(𝐹) → (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
3736com3l 81 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
3837exp31 364 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
3938com34 83 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → (𝑥 ∈ On → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝐵 ∈ dom 𝑓 → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4039com24 87 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4122, 40sylbird 170 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fn 𝑥 → (𝐵𝑥 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4241com3l 81 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4320, 42syld 45 . . . . . . . . . . . . . . . . 17 (𝐵𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4443com24 87 . . . . . . . . . . . . . . . 16 (𝐵𝑥 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4544imp4d 352 . . . . . . . . . . . . . . 15 (𝐵𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
4615, 45mpdi 43 . . . . . . . . . . . . . 14 (𝐵𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
477, 46syl 14 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
4847exp4d 369 . . . . . . . . . . . 12 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
4948ex 115 . . . . . . . . . . 11 (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
5049com4r 86 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
5150pm2.43i 49 . . . . . . . . 9 (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
5251com3l 81 . . . . . . . 8 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
5352imp4a 349 . . . . . . 7 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
5453rexlimdv 2622 . . . . . 6 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
5554imp 124 . . . . 5 ((⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
5655exlimiv 1621 . . . 4 (∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
576, 56sylbi 121 . . 3 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
5857exlimiv 1621 . 2 (∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
592, 58syl 14 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wral 2484  wrex 2485  wss 3166  cop 3636   cuni 3850  Oncon0 4410  dom cdm 4675  cres 4677  Fun wfun 5265   Fn wfn 5266  cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-recs 6391
This theorem is referenced by:  tfr2a  6407  tfrlemiubacc  6416  tfr1onlemubacc  6432  tfrcllemubacc  6445
  Copyright terms: Public domain W3C validator