| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f1ssr | GIF version | ||
| Description: Combine a one-to-one function with a restriction on the domain. (Contributed by Stefan O'Rear, 20-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| f1ssr | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1fn 5465 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹 Fn 𝐴) | 
| 3 | simpr 110 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ran 𝐹 ⊆ 𝐶) | |
| 4 | df-f 5262 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 5 | 2, 3, 4 | sylanbrc 417 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | 
| 6 | df-f1 5263 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 7 | 6 | simprbi 275 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) | 
| 8 | 7 | adantr 276 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → Fun ◡𝐹) | 
| 9 | df-f1 5263 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 10 | 5, 8, 9 | sylanbrc 417 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3157 ◡ccnv 4662 ran crn 4664 Fun wfun 5252 Fn wfn 5253 ⟶wf 5254 –1-1→wf1 5255 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-f 5262 df-f1 5263 | 
| This theorem is referenced by: f1ff1 5471 difinfsn 7166 | 
| Copyright terms: Public domain | W3C validator |