Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ssr | GIF version |
Description: Combine a one-to-one function with a restriction on the domain. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
f1ssr | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5405 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹 Fn 𝐴) |
3 | simpr 109 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ran 𝐹 ⊆ 𝐶) | |
4 | df-f 5202 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
5 | 2, 3, 4 | sylanbrc 415 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
6 | df-f1 5203 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
7 | 6 | simprbi 273 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
8 | 7 | adantr 274 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → Fun ◡𝐹) |
9 | df-f1 5203 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
10 | 5, 8, 9 | sylanbrc 415 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ⊆ wss 3121 ◡ccnv 4610 ran crn 4612 Fun wfun 5192 Fn wfn 5193 ⟶wf 5194 –1-1→wf1 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-f 5202 df-f1 5203 |
This theorem is referenced by: f1ff1 5411 difinfsn 7077 |
Copyright terms: Public domain | W3C validator |