![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-f | GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 5214 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 5213 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4629 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 3131 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: feq1 5350 feq2 5351 feq3 5352 nff 5364 sbcfg 5366 ffn 5367 dffn2 5369 frn 5376 dffn3 5378 fss 5379 fco 5383 funssxp 5387 fun 5390 fnfco 5392 fssres 5393 fcoi2 5399 fintm 5403 fin 5404 f0 5408 fconst 5413 f1ssr 5430 fof 5440 dff1o2 5468 fun11iun 5484 ffoss 5495 dff2 5662 fmpt 5668 ffnfv 5676 ffvresb 5681 fpr 5700 fprg 5701 idref 5759 dff1o6 5779 fliftf 5802 1stcof 6166 2ndcof 6167 smores 6295 smores2 6297 iordsmo 6300 tfrcllembfn 6360 sbthlemi9 6966 inresflem 7061 frec2uzf1od 10408 frecuzrdgtcl 10414 fclim 11304 ennnfonelemf1 12421 srgfcl 13161 cnrest2 13821 lmss 13831 psmetxrge0 13917 dvfgg 14242 nninfall 14843 |
Copyright terms: Public domain | W3C validator |