| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-f | GIF version | ||
| Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wf 5276 | . 2 wff 𝐹:𝐴⟶𝐵 |
| 5 | 3, 1 | wfn 5275 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 4684 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wss 3170 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
| 8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: feq1 5418 feq2 5419 feq3 5420 nff 5432 sbcfg 5434 ffn 5435 dffn2 5437 frn 5444 dffn3 5446 fss 5447 fco 5451 funssxp 5455 fun 5459 fnfco 5462 fssres 5463 fcoi2 5469 fintm 5473 fin 5474 f0 5478 fconst 5483 f1ssr 5500 fof 5510 dff1o2 5539 fun11iun 5555 ffoss 5566 dff2 5737 fmpt 5743 ffnfv 5751 ffvresb 5756 fpr 5779 fprg 5780 idref 5838 dff1o6 5858 fliftf 5881 1stcof 6262 2ndcof 6263 smores 6391 smores2 6393 iordsmo 6396 tfrcllembfn 6456 sbthlemi9 7082 inresflem 7177 frec2uzf1od 10573 frecuzrdgtcl 10579 fclim 11680 ennnfonelemf1 12864 resmhm2b 13396 srgfcl 13810 cnrest2 14783 lmss 14793 psmetxrge0 14879 dvfgg 15235 plyreres 15311 nninfall 16087 |
| Copyright terms: Public domain | W3C validator |