| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-f | GIF version | ||
| Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wf 5313 | . 2 wff 𝐹:𝐴⟶𝐵 |
| 5 | 3, 1 | wfn 5312 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 4719 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wss 3197 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
| 8 | 5, 7 | wa 104 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
| 9 | 4, 8 | wb 105 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: feq1 5455 feq2 5456 feq3 5457 nff 5469 sbcfg 5471 ffn 5472 dffn2 5474 frn 5481 dffn3 5483 fss 5484 fco 5488 funssxp 5492 fun 5496 fnfco 5499 fssres 5500 fcoi2 5506 fintm 5510 fin 5511 f0 5515 fconst 5520 f1ssr 5537 fof 5547 dff1o2 5576 fun11iun 5592 ffoss 5603 dff2 5778 fmpt 5784 ffnfv 5792 ffvresb 5797 fpr 5820 fprg 5821 idref 5879 dff1o6 5899 fliftf 5922 1stcof 6307 2ndcof 6308 smores 6436 smores2 6438 iordsmo 6441 tfrcllembfn 6501 sbthlemi9 7128 inresflem 7223 frec2uzf1od 10623 frecuzrdgtcl 10629 fclim 11800 ennnfonelemf1 12984 resmhm2b 13517 srgfcl 13931 cnrest2 14904 lmss 14914 psmetxrge0 15000 dvfgg 15356 plyreres 15432 ausgrusgrben 15960 ausgrumgrien 15962 nninfall 16334 |
| Copyright terms: Public domain | W3C validator |