Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-f | GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 5194 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 5193 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4612 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 3121 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 103 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 104 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: feq1 5330 feq2 5331 feq3 5332 nff 5344 sbcfg 5346 ffn 5347 dffn2 5349 frn 5356 dffn3 5358 fss 5359 fco 5363 funssxp 5367 fun 5370 fnfco 5372 fssres 5373 fcoi2 5379 fintm 5383 fin 5384 f0 5388 fconst 5393 f1ssr 5410 fof 5420 dff1o2 5447 fun11iun 5463 ffoss 5474 dff2 5640 fmpt 5646 ffnfv 5654 ffvresb 5659 fpr 5678 fprg 5679 idref 5736 dff1o6 5755 fliftf 5778 1stcof 6142 2ndcof 6143 smores 6271 smores2 6273 iordsmo 6276 tfrcllembfn 6336 sbthlemi9 6942 inresflem 7037 frec2uzf1od 10362 frecuzrdgtcl 10368 fclim 11257 ennnfonelemf1 12373 cnrest2 13030 lmss 13040 psmetxrge0 13126 dvfgg 13451 nninfall 14042 |
Copyright terms: Public domain | W3C validator |