Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-f | GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 5183 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 5182 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4604 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 3115 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 103 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 104 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: feq1 5319 feq2 5320 feq3 5321 nff 5333 sbcfg 5335 ffn 5336 dffn2 5338 frn 5345 dffn3 5347 fss 5348 fco 5352 funssxp 5356 fun 5359 fnfco 5361 fssres 5362 fcoi2 5368 fintm 5372 fin 5373 f0 5377 fconst 5382 f1ssr 5399 fof 5409 dff1o2 5436 fun11iun 5452 ffoss 5463 dff2 5628 fmpt 5634 ffnfv 5642 ffvresb 5647 fpr 5666 fprg 5667 idref 5724 dff1o6 5743 fliftf 5766 1stcof 6128 2ndcof 6129 smores 6256 smores2 6258 iordsmo 6261 tfrcllembfn 6321 sbthlemi9 6926 inresflem 7021 frec2uzf1od 10337 frecuzrdgtcl 10343 fclim 11231 ennnfonelemf1 12347 cnrest2 12836 lmss 12846 psmetxrge0 12932 dvfgg 13257 nninfall 13849 |
Copyright terms: Public domain | W3C validator |