HomeHome Intuitionistic Logic Explorer
Theorem List (p. 55 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5401-5500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfimacnvdisj 5401 The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
((𝐹:𝐴⟢𝐡 ∧ (𝐡 ∩ 𝐢) = βˆ…) β†’ (◑𝐹 β€œ 𝐢) = βˆ…)
 
Theoremfintm 5402* Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.)
βˆƒπ‘₯ π‘₯ ∈ 𝐡    β‡’   (𝐹:𝐴⟢∩ 𝐡 ↔ βˆ€π‘₯ ∈ 𝐡 𝐹:𝐴⟢π‘₯)
 
Theoremfin 5403 Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴⟢(𝐡 ∩ 𝐢) ↔ (𝐹:𝐴⟢𝐡 ∧ 𝐹:𝐴⟢𝐢))
 
Theoremfabexg 5404* Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
𝐹 = {π‘₯ ∣ (π‘₯:𝐴⟢𝐡 ∧ πœ‘)}    β‡’   ((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) β†’ 𝐹 ∈ V)
 
Theoremfabex 5405* Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
𝐴 ∈ V    &   π΅ ∈ V    &   πΉ = {π‘₯ ∣ (π‘₯:𝐴⟢𝐡 ∧ πœ‘)}    β‡’   πΉ ∈ V
 
Theoremdmfex 5406 If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹 ∈ 𝐢 ∧ 𝐹:𝐴⟢𝐡) β†’ 𝐴 ∈ V)
 
Theoremf0 5407 The empty function. (Contributed by NM, 14-Aug-1999.)
βˆ…:βˆ…βŸΆπ΄
 
Theoremf00 5408 A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
(𝐹:π΄βŸΆβˆ… ↔ (𝐹 = βˆ… ∧ 𝐴 = βˆ…))
 
Theoremf0bi 5409 A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
(𝐹:βˆ…βŸΆπ‘‹ ↔ 𝐹 = βˆ…)
 
Theoremf0dom0 5410 A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
(𝐹:π‘‹βŸΆπ‘Œ β†’ (𝑋 = βˆ… ↔ 𝐹 = βˆ…))
 
Theoremf0rn0 5411* If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
((𝐸:π‘‹βŸΆπ‘Œ ∧ Β¬ βˆƒπ‘¦ ∈ π‘Œ 𝑦 ∈ ran 𝐸) β†’ 𝑋 = βˆ…)
 
Theoremfconst 5412 A cross product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
𝐡 ∈ V    β‡’   (𝐴 Γ— {𝐡}):𝐴⟢{𝐡}
 
Theoremfconstg 5413 A cross product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
(𝐡 ∈ 𝑉 β†’ (𝐴 Γ— {𝐡}):𝐴⟢{𝐡})
 
Theoremfnconstg 5414 A cross product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.)
(𝐡 ∈ 𝑉 β†’ (𝐴 Γ— {𝐡}) Fn 𝐴)
 
Theoremfconst6g 5415 Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐡 ∈ 𝐢 β†’ (𝐴 Γ— {𝐡}):𝐴⟢𝐢)
 
Theoremfconst6 5416 A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
𝐡 ∈ 𝐢    β‡’   (𝐴 Γ— {𝐡}):𝐴⟢𝐢
 
Theoremf1eq1 5417 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐹 = 𝐺 β†’ (𝐹:𝐴–1-1→𝐡 ↔ 𝐺:𝐴–1-1→𝐡))
 
Theoremf1eq2 5418 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐡 β†’ (𝐹:𝐴–1-1→𝐢 ↔ 𝐹:𝐡–1-1→𝐢))
 
Theoremf1eq3 5419 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐡 β†’ (𝐹:𝐢–1-1→𝐴 ↔ 𝐹:𝐢–1-1→𝐡))
 
Theoremnff1 5420 Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
β„²π‘₯𝐹    &   β„²π‘₯𝐴    &   β„²π‘₯𝐡    β‡’   β„²π‘₯ 𝐹:𝐴–1-1→𝐡
 
Theoremdff12 5421* Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
(𝐹:𝐴–1-1→𝐡 ↔ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘¦βˆƒ*π‘₯ π‘₯𝐹𝑦))
 
Theoremf1f 5422 A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.)
(𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴⟢𝐡)
 
Theoremf1rn 5423 The range of a one-to-one mapping. (Contributed by BJ, 6-Jul-2022.)
(𝐹:𝐴–1-1→𝐡 β†’ ran 𝐹 βŠ† 𝐡)
 
Theoremf1fn 5424 A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴–1-1→𝐡 β†’ 𝐹 Fn 𝐴)
 
Theoremf1fun 5425 A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴–1-1→𝐡 β†’ Fun 𝐹)
 
Theoremf1rel 5426 A one-to-one onto mapping is a relation. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴–1-1→𝐡 β†’ Rel 𝐹)
 
Theoremf1dm 5427 The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴–1-1→𝐡 β†’ dom 𝐹 = 𝐴)
 
Theoremf1ss 5428 A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.)
((𝐹:𝐴–1-1→𝐡 ∧ 𝐡 βŠ† 𝐢) β†’ 𝐹:𝐴–1-1→𝐢)
 
Theoremf1ssr 5429 Combine a one-to-one function with a restriction on the domain. (Contributed by Stefan O'Rear, 20-Feb-2015.)
((𝐹:𝐴–1-1→𝐡 ∧ ran 𝐹 βŠ† 𝐢) β†’ 𝐹:𝐴–1-1→𝐢)
 
Theoremf1ff1 5430 If a function is one-to-one from 𝐴 to 𝐡 and is also a function from 𝐴 to 𝐢, then it is a one-to-one function from 𝐴 to 𝐢. (Contributed by BJ, 4-Jul-2022.)
((𝐹:𝐴–1-1→𝐡 ∧ 𝐹:𝐴⟢𝐢) β†’ 𝐹:𝐴–1-1→𝐢)
 
Theoremf1ssres 5431 A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
((𝐹:𝐴–1-1→𝐡 ∧ 𝐢 βŠ† 𝐴) β†’ (𝐹 β†Ύ 𝐢):𝐢–1-1→𝐡)
 
Theoremf1resf1 5432 The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
(((𝐹:𝐴–1-1→𝐡 ∧ 𝐢 βŠ† 𝐴) ∧ (𝐹 β†Ύ 𝐢):𝐢⟢𝐷) β†’ (𝐹 β†Ύ 𝐢):𝐢–1-1→𝐷)
 
Theoremf1cnvcnv 5433 Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
(◑◑𝐴:dom 𝐴–1-1β†’V ↔ (Fun ◑𝐴 ∧ Fun ◑◑𝐴))
 
Theoremf1co 5434 Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
((𝐹:𝐡–1-1→𝐢 ∧ 𝐺:𝐴–1-1→𝐡) β†’ (𝐹 ∘ 𝐺):𝐴–1-1→𝐢)
 
Theoremfoeq1 5435 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 β†’ (𝐹:𝐴–onto→𝐡 ↔ 𝐺:𝐴–onto→𝐡))
 
Theoremfoeq2 5436 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐡 β†’ (𝐹:𝐴–onto→𝐢 ↔ 𝐹:𝐡–onto→𝐢))
 
Theoremfoeq3 5437 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐡 β†’ (𝐹:𝐢–onto→𝐴 ↔ 𝐹:𝐢–onto→𝐡))
 
Theoremnffo 5438 Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
β„²π‘₯𝐹    &   β„²π‘₯𝐴    &   β„²π‘₯𝐡    β‡’   β„²π‘₯ 𝐹:𝐴–onto→𝐡
 
Theoremfof 5439 An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴–onto→𝐡 β†’ 𝐹:𝐴⟢𝐡)
 
Theoremfofun 5440 An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
(𝐹:𝐴–onto→𝐡 β†’ Fun 𝐹)
 
Theoremfofn 5441 An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.)
(𝐹:𝐴–onto→𝐡 β†’ 𝐹 Fn 𝐴)
 
Theoremforn 5442 The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴–onto→𝐡 β†’ ran 𝐹 = 𝐡)
 
Theoremdffo2 5443 Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
(𝐹:𝐴–onto→𝐡 ↔ (𝐹:𝐴⟢𝐡 ∧ ran 𝐹 = 𝐡))
 
Theoremfoima 5444 The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
(𝐹:𝐴–onto→𝐡 β†’ (𝐹 β€œ 𝐴) = 𝐡)
 
Theoremdffn4 5445 A function maps onto its range. (Contributed by NM, 10-May-1998.)
(𝐹 Fn 𝐴 ↔ 𝐹:𝐴–ontoβ†’ran 𝐹)
 
Theoremfunforn 5446 A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
(Fun 𝐴 ↔ 𝐴:dom 𝐴–ontoβ†’ran 𝐴)
 
Theoremfodmrnu 5447 An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
((𝐹:𝐴–onto→𝐡 ∧ 𝐹:𝐢–onto→𝐷) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
 
Theoremfores 5448 Restriction of a function. (Contributed by NM, 4-Mar-1997.)
((Fun 𝐹 ∧ 𝐴 βŠ† dom 𝐹) β†’ (𝐹 β†Ύ 𝐴):𝐴–ontoβ†’(𝐹 β€œ 𝐴))
 
Theoremfoco 5449 Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
((𝐹:𝐡–onto→𝐢 ∧ 𝐺:𝐴–onto→𝐡) β†’ (𝐹 ∘ 𝐺):𝐴–onto→𝐢)
 
Theoremf1oeq1 5450 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐹 = 𝐺 β†’ (𝐹:𝐴–1-1-onto→𝐡 ↔ 𝐺:𝐴–1-1-onto→𝐡))
 
Theoremf1oeq2 5451 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐡 β†’ (𝐹:𝐴–1-1-onto→𝐢 ↔ 𝐹:𝐡–1-1-onto→𝐢))
 
Theoremf1oeq3 5452 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐡 β†’ (𝐹:𝐢–1-1-onto→𝐴 ↔ 𝐹:𝐢–1-1-onto→𝐡))
 
Theoremf1oeq23 5453 Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
((𝐴 = 𝐡 ∧ 𝐢 = 𝐷) β†’ (𝐹:𝐴–1-1-onto→𝐢 ↔ 𝐹:𝐡–1-1-onto→𝐷))
 
Theoremf1eq123d 5454 Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(πœ‘ β†’ 𝐹 = 𝐺)    &   (πœ‘ β†’ 𝐴 = 𝐡)    &   (πœ‘ β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ (𝐹:𝐴–1-1→𝐢 ↔ 𝐺:𝐡–1-1→𝐷))
 
Theoremfoeq123d 5455 Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(πœ‘ β†’ 𝐹 = 𝐺)    &   (πœ‘ β†’ 𝐴 = 𝐡)    &   (πœ‘ β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ (𝐹:𝐴–onto→𝐢 ↔ 𝐺:𝐡–onto→𝐷))
 
Theoremf1oeq123d 5456 Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(πœ‘ β†’ 𝐹 = 𝐺)    &   (πœ‘ β†’ 𝐴 = 𝐡)    &   (πœ‘ β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ (𝐹:𝐴–1-1-onto→𝐢 ↔ 𝐺:𝐡–1-1-onto→𝐷))
 
Theoremf1oeq1d 5457 Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐹 = 𝐺)    β‡’   (πœ‘ β†’ (𝐹:𝐴–1-1-onto→𝐡 ↔ 𝐺:𝐴–1-1-onto→𝐡))
 
Theoremf1oeq2d 5458 Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 = 𝐡)    β‡’   (πœ‘ β†’ (𝐹:𝐴–1-1-onto→𝐢 ↔ 𝐹:𝐡–1-1-onto→𝐢))
 
Theoremf1oeq3d 5459 Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 = 𝐡)    β‡’   (πœ‘ β†’ (𝐹:𝐢–1-1-onto→𝐴 ↔ 𝐹:𝐢–1-1-onto→𝐡))
 
Theoremnff1o 5460 Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
β„²π‘₯𝐹    &   β„²π‘₯𝐴    &   β„²π‘₯𝐡    β‡’   β„²π‘₯ 𝐹:𝐴–1-1-onto→𝐡
 
Theoremf1of1 5461 A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ 𝐹:𝐴–1-1→𝐡)
 
Theoremf1of 5462 A one-to-one onto mapping is a mapping. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ 𝐹:𝐴⟢𝐡)
 
Theoremf1ofn 5463 A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ 𝐹 Fn 𝐴)
 
Theoremf1ofun 5464 A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ Fun 𝐹)
 
Theoremf1orel 5465 A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ Rel 𝐹)
 
Theoremf1odm 5466 The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ dom 𝐹 = 𝐴)
 
Theoremdff1o2 5467 Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴–1-1-onto→𝐡 ↔ (𝐹 Fn 𝐴 ∧ Fun ◑𝐹 ∧ ran 𝐹 = 𝐡))
 
Theoremdff1o3 5468 Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴–1-1-onto→𝐡 ↔ (𝐹:𝐴–onto→𝐡 ∧ Fun ◑𝐹))
 
Theoremf1ofo 5469 A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ 𝐹:𝐴–onto→𝐡)
 
Theoremdff1o4 5470 Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴–1-1-onto→𝐡 ↔ (𝐹 Fn 𝐴 ∧ ◑𝐹 Fn 𝐡))
 
Theoremdff1o5 5471 Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴–1-1-onto→𝐡 ↔ (𝐹:𝐴–1-1→𝐡 ∧ ran 𝐹 = 𝐡))
 
Theoremf1orn 5472 A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
(𝐹:𝐴–1-1-ontoβ†’ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◑𝐹))
 
Theoremf1f1orn 5473 A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
(𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴–1-1-ontoβ†’ran 𝐹)
 
Theoremf1oabexg 5474* The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐡 ∧ πœ‘)}    β‡’   ((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐷) β†’ 𝐹 ∈ V)
 
Theoremf1ocnv 5475 The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ ◑𝐹:𝐡–1-1-onto→𝐴)
 
Theoremf1ocnvb 5476 A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003.)
(Rel 𝐹 β†’ (𝐹:𝐴–1-1-onto→𝐡 ↔ ◑𝐹:𝐡–1-1-onto→𝐴))
 
Theoremf1ores 5477 The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.)
((𝐹:𝐴–1-1→𝐡 ∧ 𝐢 βŠ† 𝐴) β†’ (𝐹 β†Ύ 𝐢):𝐢–1-1-ontoβ†’(𝐹 β€œ 𝐢))
 
Theoremf1orescnv 5478 The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
((Fun ◑𝐹 ∧ (𝐹 β†Ύ 𝑅):𝑅–1-1-onto→𝑃) β†’ (◑𝐹 β†Ύ 𝑃):𝑃–1-1-onto→𝑅)
 
Theoremf1imacnv 5479 Preimage of an image. (Contributed by NM, 30-Sep-2004.)
((𝐹:𝐴–1-1→𝐡 ∧ 𝐢 βŠ† 𝐴) β†’ (◑𝐹 β€œ (𝐹 β€œ 𝐢)) = 𝐢)
 
Theoremfoimacnv 5480 A reverse version of f1imacnv 5479. (Contributed by Jeff Hankins, 16-Jul-2009.)
((𝐹:𝐴–onto→𝐡 ∧ 𝐢 βŠ† 𝐡) β†’ (𝐹 β€œ (◑𝐹 β€œ 𝐢)) = 𝐢)
 
Theoremfoun 5481 The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
(((𝐹:𝐴–onto→𝐡 ∧ 𝐺:𝐢–onto→𝐷) ∧ (𝐴 ∩ 𝐢) = βˆ…) β†’ (𝐹 βˆͺ 𝐺):(𝐴 βˆͺ 𝐢)–ontoβ†’(𝐡 βˆͺ 𝐷))
 
Theoremf1oun 5482 The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
(((𝐹:𝐴–1-1-onto→𝐡 ∧ 𝐺:𝐢–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐢) = βˆ… ∧ (𝐡 ∩ 𝐷) = βˆ…)) β†’ (𝐹 βˆͺ 𝐺):(𝐴 βˆͺ 𝐢)–1-1-ontoβ†’(𝐡 βˆͺ 𝐷))
 
Theoremfun11iun 5483* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.)
(π‘₯ = 𝑦 β†’ 𝐡 = 𝐢)    &   π΅ ∈ V    β‡’   (βˆ€π‘₯ ∈ 𝐴 (𝐡:𝐷–1-1→𝑆 ∧ βˆ€π‘¦ ∈ 𝐴 (𝐡 βŠ† 𝐢 ∨ 𝐢 βŠ† 𝐡)) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡:βˆͺ π‘₯ ∈ 𝐴 𝐷–1-1→𝑆)
 
Theoremresdif 5484 The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
((Fun ◑𝐹 ∧ (𝐹 β†Ύ 𝐴):𝐴–onto→𝐢 ∧ (𝐹 β†Ύ 𝐡):𝐡–onto→𝐷) β†’ (𝐹 β†Ύ (𝐴 βˆ– 𝐡)):(𝐴 βˆ– 𝐡)–1-1-ontoβ†’(𝐢 βˆ– 𝐷))
 
Theoremf1oco 5485 Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
((𝐹:𝐡–1-1-onto→𝐢 ∧ 𝐺:𝐴–1-1-onto→𝐡) β†’ (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐢)
 
Theoremf1cnv 5486 The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴–1-1→𝐡 β†’ ◑𝐹:ran 𝐹–1-1-onto→𝐴)
 
Theoremfuncocnv2 5487 Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 β†’ (𝐹 ∘ ◑𝐹) = ( I β†Ύ ran 𝐹))
 
Theoremfococnv2 5488 The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
(𝐹:𝐴–onto→𝐡 β†’ (𝐹 ∘ ◑𝐹) = ( I β†Ύ 𝐡))
 
Theoremf1ococnv2 5489 The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ (𝐹 ∘ ◑𝐹) = ( I β†Ύ 𝐡))
 
Theoremf1cocnv2 5490 Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴–1-1→𝐡 β†’ (𝐹 ∘ ◑𝐹) = ( I β†Ύ ran 𝐹))
 
Theoremf1ococnv1 5491 The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.)
(𝐹:𝐴–1-1-onto→𝐡 β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ 𝐴))
 
Theoremf1cocnv1 5492 Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴–1-1→𝐡 β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ 𝐴))
 
Theoremfuncoeqres 5493 Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) β†’ (𝐹 β†Ύ ran 𝐺) = (𝐻 ∘ ◑𝐺))
 
Theoremffoss 5494* Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
𝐹 ∈ V    β‡’   (𝐹:𝐴⟢𝐡 ↔ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
 
Theoremf11o 5495* Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
𝐹 ∈ V    β‡’   (𝐹:𝐴–1-1→𝐡 ↔ βˆƒπ‘₯(𝐹:𝐴–1-1-ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
 
Theoremf10 5496 The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
βˆ…:βˆ…β€“1-1→𝐴
 
Theoremf1o00 5497 One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
(𝐹:βˆ…β€“1-1-onto→𝐴 ↔ (𝐹 = βˆ… ∧ 𝐴 = βˆ…))
 
Theoremfo00 5498 Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
(𝐹:βˆ…β€“onto→𝐴 ↔ (𝐹 = βˆ… ∧ 𝐴 = βˆ…))
 
Theoremf1o0 5499 One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
βˆ…:βˆ…β€“1-1-ontoβ†’βˆ…
 
Theoremf1oi 5500 A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
( I β†Ύ 𝐴):𝐴–1-1-onto→𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >