ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ff1 GIF version

Theorem f1ff1 5411
Description: If a function is one-to-one from 𝐴 to 𝐵 and is also a function from 𝐴 to 𝐶, then it is a one-to-one function from 𝐴 to 𝐶. (Contributed by BJ, 4-Jul-2022.)
Assertion
Ref Expression
f1ff1 ((𝐹:𝐴1-1𝐵𝐹:𝐴𝐶) → 𝐹:𝐴1-1𝐶)

Proof of Theorem f1ff1
StepHypRef Expression
1 frn 5356 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
2 f1ssr 5410 . 2 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶)
31, 2sylan2 284 1 ((𝐹:𝐴1-1𝐵𝐹:𝐴𝐶) → 𝐹:𝐴1-1𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wss 3121  ran crn 4612  wf 5194  1-1wf1 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-f 5202  df-f1 5203
This theorem is referenced by:  f1resf1  5413  inresflem  7037
  Copyright terms: Public domain W3C validator