ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ss GIF version

Theorem f1ss 5498
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1ss ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)

Proof of Theorem f1ss
StepHypRef Expression
1 f1f 5492 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fss 5446 . . 3 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
31, 2sylan 283 . 2 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
4 df-f1 5284 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
54simprbi 275 . . 3 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
65adantr 276 . 2 ((𝐹:𝐴1-1𝐵𝐵𝐶) → Fun 𝐹)
7 df-f1 5284 . 2 (𝐹:𝐴1-1𝐶 ↔ (𝐹:𝐴𝐶 ∧ Fun 𝐹))
83, 6, 7sylanbrc 417 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3170  ccnv 4681  Fun wfun 5273  wf 5275  1-1wf1 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183  df-f 5283  df-f1 5284
This theorem is referenced by:  f1sng  5576  domssr  6881
  Copyright terms: Public domain W3C validator