ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn GIF version

Theorem f1fn 5532
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5530 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 ffn 5472 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5312  wf 5313  1-1wf1 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5321  df-f1 5322
This theorem is referenced by:  f1fun  5533  f1rel  5534  f1dm  5535  f1ssr  5537  f1f1orn  5582  f1elima  5896  f1eqcocnv  5914  f1oiso  5949  phplem4dom  7019  f1finf1o  7110  updjudhcoinlf  7243  updjudhcoinrg  7244  updjud  7245  fihashf1rn  11005  kerf1ghm  13806  domomsubct  16326
  Copyright terms: Public domain W3C validator