| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1fn | GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 5480 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5424 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5265 ⟶wf 5266 –1-1→wf1 5267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5274 df-f1 5275 |
| This theorem is referenced by: f1fun 5483 f1rel 5484 f1dm 5485 f1ssr 5487 f1f1orn 5532 f1elima 5841 f1eqcocnv 5859 f1oiso 5894 phplem4dom 6958 f1finf1o 7048 updjudhcoinlf 7181 updjudhcoinrg 7182 updjud 7183 fihashf1rn 10931 kerf1ghm 13552 domomsubct 15871 |
| Copyright terms: Public domain | W3C validator |