| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1fn | GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 5475 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5419 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5263 ⟶wf 5264 –1-1→wf1 5265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5272 df-f1 5273 |
| This theorem is referenced by: f1fun 5478 f1rel 5479 f1dm 5480 f1ssr 5482 f1f1orn 5527 f1elima 5832 f1eqcocnv 5850 f1oiso 5885 phplem4dom 6941 f1finf1o 7031 updjudhcoinlf 7164 updjudhcoinrg 7165 updjud 7166 fihashf1rn 10914 kerf1ghm 13528 domomsubct 15802 |
| Copyright terms: Public domain | W3C validator |