| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1fn | GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 5530 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5472 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5312 ⟶wf 5313 –1-1→wf1 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5321 df-f1 5322 |
| This theorem is referenced by: f1fun 5533 f1rel 5534 f1dm 5535 f1ssr 5537 f1f1orn 5582 f1elima 5896 f1eqcocnv 5914 f1oiso 5949 phplem4dom 7019 f1finf1o 7110 updjudhcoinlf 7243 updjudhcoinrg 7244 updjud 7245 fihashf1rn 11005 kerf1ghm 13806 domomsubct 16326 |
| Copyright terms: Public domain | W3C validator |