ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn GIF version

Theorem f1fn 5462
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5460 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 ffn 5404 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5250  wf 5251  1-1wf1 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5259  df-f1 5260
This theorem is referenced by:  f1fun  5463  f1rel  5464  f1dm  5465  f1ssr  5467  f1f1orn  5512  f1elima  5817  f1eqcocnv  5835  f1oiso  5870  phplem4dom  6920  f1finf1o  7008  updjudhcoinlf  7141  updjudhcoinrg  7142  updjud  7143  fihashf1rn  10862  kerf1ghm  13347
  Copyright terms: Public domain W3C validator