ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn GIF version

Theorem f1fn 5477
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5475 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 ffn 5419 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5263  wf 5264  1-1wf1 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5272  df-f1 5273
This theorem is referenced by:  f1fun  5478  f1rel  5479  f1dm  5480  f1ssr  5482  f1f1orn  5527  f1elima  5832  f1eqcocnv  5850  f1oiso  5885  phplem4dom  6941  f1finf1o  7031  updjudhcoinlf  7164  updjudhcoinrg  7165  updjud  7166  fihashf1rn  10914  kerf1ghm  13528  domomsubct  15802
  Copyright terms: Public domain W3C validator