| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1fn | GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 5466 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5410 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5254 ⟶wf 5255 –1-1→wf1 5256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5263 df-f1 5264 |
| This theorem is referenced by: f1fun 5469 f1rel 5470 f1dm 5471 f1ssr 5473 f1f1orn 5518 f1elima 5823 f1eqcocnv 5841 f1oiso 5876 phplem4dom 6932 f1finf1o 7022 updjudhcoinlf 7155 updjudhcoinrg 7156 updjud 7157 fihashf1rn 10897 kerf1ghm 13480 domomsubct 15732 |
| Copyright terms: Public domain | W3C validator |