ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn GIF version

Theorem f1fn 5482
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5480 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 ffn 5424 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5265  wf 5266  1-1wf1 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5274  df-f1 5275
This theorem is referenced by:  f1fun  5483  f1rel  5484  f1dm  5485  f1ssr  5487  f1f1orn  5532  f1elima  5841  f1eqcocnv  5859  f1oiso  5894  phplem4dom  6958  f1finf1o  7048  updjudhcoinlf  7181  updjudhcoinrg  7182  updjud  7183  fihashf1rn  10931  kerf1ghm  13552  domomsubct  15871
  Copyright terms: Public domain W3C validator