ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn GIF version

Theorem f1fn 5415
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5413 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 ffn 5357 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5203  wf 5204  1-1wf1 5205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5212  df-f1 5213
This theorem is referenced by:  f1fun  5416  f1rel  5417  f1dm  5418  f1ssr  5420  f1f1orn  5464  f1elima  5764  f1eqcocnv  5782  f1oiso  5817  phplem4dom  6852  f1finf1o  6936  updjudhcoinlf  7069  updjudhcoinrg  7070  updjud  7071  fihashf1rn  10734
  Copyright terms: Public domain W3C validator