Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1fn | GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5393 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5337 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5183 ⟶wf 5184 –1-1→wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f 5192 df-f1 5193 |
This theorem is referenced by: f1fun 5396 f1rel 5397 f1dm 5398 f1ssr 5400 f1f1orn 5443 f1elima 5741 f1eqcocnv 5759 f1oiso 5794 phplem4dom 6828 f1finf1o 6912 updjudhcoinlf 7045 updjudhcoinrg 7046 updjud 7047 fihashf1rn 10702 |
Copyright terms: Public domain | W3C validator |