Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1fn | GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5413 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5357 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5203 ⟶wf 5204 –1-1→wf1 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f 5212 df-f1 5213 |
This theorem is referenced by: f1fun 5416 f1rel 5417 f1dm 5418 f1ssr 5420 f1f1orn 5464 f1elima 5764 f1eqcocnv 5782 f1oiso 5817 phplem4dom 6852 f1finf1o 6936 updjudhcoinlf 7069 updjudhcoinrg 7070 updjud 7071 fihashf1rn 10734 |
Copyright terms: Public domain | W3C validator |