ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn GIF version

Theorem f1fn 5495
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5493 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 ffn 5435 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5275  wf 5276  1-1wf1 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5284  df-f1 5285
This theorem is referenced by:  f1fun  5496  f1rel  5497  f1dm  5498  f1ssr  5500  f1f1orn  5545  f1elima  5855  f1eqcocnv  5873  f1oiso  5908  phplem4dom  6974  f1finf1o  7064  updjudhcoinlf  7197  updjudhcoinrg  7198  updjud  7199  fihashf1rn  10955  kerf1ghm  13685  domomsubct  16079
  Copyright terms: Public domain W3C validator