![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1fn | GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5264 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5208 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5054 ⟶wf 5055 –1-1→wf1 5056 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f 5063 df-f1 5064 |
This theorem is referenced by: f1fun 5267 f1rel 5268 f1dm 5269 f1ssr 5271 f1f1orn 5312 f1elima 5606 f1eqcocnv 5624 f1oiso 5659 phplem4dom 6685 f1finf1o 6763 updjudhcoinlf 6880 updjudhcoinrg 6881 updjud 6882 fihashf1rn 10376 |
Copyright terms: Public domain | W3C validator |