| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1fn | GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 5493 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5435 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5275 ⟶wf 5276 –1-1→wf1 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5284 df-f1 5285 |
| This theorem is referenced by: f1fun 5496 f1rel 5497 f1dm 5498 f1ssr 5500 f1f1orn 5545 f1elima 5855 f1eqcocnv 5873 f1oiso 5908 phplem4dom 6974 f1finf1o 7064 updjudhcoinlf 7197 updjudhcoinrg 7198 updjud 7199 fihashf1rn 10955 kerf1ghm 13685 domomsubct 16079 |
| Copyright terms: Public domain | W3C validator |