![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1fn | GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5460 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5404 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5250 ⟶wf 5251 –1-1→wf1 5252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f 5259 df-f1 5260 |
This theorem is referenced by: f1fun 5463 f1rel 5464 f1dm 5465 f1ssr 5467 f1f1orn 5512 f1elima 5817 f1eqcocnv 5835 f1oiso 5870 phplem4dom 6920 f1finf1o 7008 updjudhcoinlf 7141 updjudhcoinrg 7142 updjud 7143 fihashf1rn 10862 kerf1ghm 13347 |
Copyright terms: Public domain | W3C validator |