| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f1fn | GIF version | ||
| Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1f 5463 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5407 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Fn wfn 5253 ⟶wf 5254 –1-1→wf1 5255 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 df-f 5262 df-f1 5263 | 
| This theorem is referenced by: f1fun 5466 f1rel 5467 f1dm 5468 f1ssr 5470 f1f1orn 5515 f1elima 5820 f1eqcocnv 5838 f1oiso 5873 phplem4dom 6923 f1finf1o 7013 updjudhcoinlf 7146 updjudhcoinrg 7147 updjud 7148 fihashf1rn 10880 kerf1ghm 13404 | 
| Copyright terms: Public domain | W3C validator |