ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn GIF version

Theorem f1fn 5465
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5463 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 ffn 5407 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5253  wf 5254  1-1wf1 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5262  df-f1 5263
This theorem is referenced by:  f1fun  5466  f1rel  5467  f1dm  5468  f1ssr  5470  f1f1orn  5515  f1elima  5820  f1eqcocnv  5838  f1oiso  5873  phplem4dom  6923  f1finf1o  7013  updjudhcoinlf  7146  updjudhcoinrg  7147  updjud  7148  fihashf1rn  10880  kerf1ghm  13404
  Copyright terms: Public domain W3C validator