Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1fn | GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5403 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5347 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5193 ⟶wf 5194 –1-1→wf1 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f 5202 df-f1 5203 |
This theorem is referenced by: f1fun 5406 f1rel 5407 f1dm 5408 f1ssr 5410 f1f1orn 5453 f1elima 5752 f1eqcocnv 5770 f1oiso 5805 phplem4dom 6840 f1finf1o 6924 updjudhcoinlf 7057 updjudhcoinrg 7058 updjud 7059 fihashf1rn 10723 |
Copyright terms: Public domain | W3C validator |