ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsn GIF version

Theorem difinfsn 7263
Description: An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfsn ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴 ∖ {𝐵}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem difinfsn
Dummy variables 𝑎 𝑓 𝑔 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omp1eom 7258 . . . . 5 (ω ⊔ 1o) ≈ ω
2 simp2 1022 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
3 endomtr 6940 . . . . 5 (((ω ⊔ 1o) ≈ ω ∧ ω ≼ 𝐴) → (ω ⊔ 1o) ≼ 𝐴)
41, 2, 3sylancr 414 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → (ω ⊔ 1o) ≼ 𝐴)
5 brdomi 6896 . . . 4 ((ω ⊔ 1o) ≼ 𝐴 → ∃𝑓 𝑓:(ω ⊔ 1o)–1-1𝐴)
64, 5syl 14 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ∃𝑓 𝑓:(ω ⊔ 1o)–1-1𝐴)
7 inlresf1 7224 . . . . . . . 8 (inl ↾ ω):ω–1-1→(ω ⊔ 1o)
8 f1co 5542 . . . . . . . 8 ((𝑓:(ω ⊔ 1o)–1-1𝐴 ∧ (inl ↾ ω):ω–1-1→(ω ⊔ 1o)) → (𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴)
97, 8mpan2 425 . . . . . . 7 (𝑓:(ω ⊔ 1o)–1-1𝐴 → (𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴)
109ad2antlr 489 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴)
11 f1f 5530 . . . . . . . . . . . 12 ((𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴 → (𝑓 ∘ (inl ↾ ω)):ω⟶𝐴)
1210, 11syl 14 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓 ∘ (inl ↾ ω)):ω⟶𝐴)
1312frnd 5482 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ran (𝑓 ∘ (inl ↾ ω)) ⊆ 𝐴)
1413sselda 3224 . . . . . . . . 9 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω))) → 𝑠𝐴)
15 simpllr 534 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (𝑓‘(inr‘∅)) = 𝐵)
16 simpr 110 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵)
17 f1f 5530 . . . . . . . . . . . . . . . . . . . 20 ((inl ↾ ω):ω–1-1→(ω ⊔ 1o) → (inl ↾ ω):ω⟶(ω ⊔ 1o))
187, 17ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (inl ↾ ω):ω⟶(ω ⊔ 1o)
19 simpr 110 . . . . . . . . . . . . . . . . . . 19 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
20 fvco3 5704 . . . . . . . . . . . . . . . . . . 19 (((inl ↾ ω):ω⟶(ω ⊔ 1o) ∧ 𝑛 ∈ ω) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = (𝑓‘((inl ↾ ω)‘𝑛)))
2118, 19, 20sylancr 414 . . . . . . . . . . . . . . . . . 18 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = (𝑓‘((inl ↾ ω)‘𝑛)))
2219fvresd 5651 . . . . . . . . . . . . . . . . . . 19 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → ((inl ↾ ω)‘𝑛) = (inl‘𝑛))
2322fveq2d 5630 . . . . . . . . . . . . . . . . . 18 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → (𝑓‘((inl ↾ ω)‘𝑛)) = (𝑓‘(inl‘𝑛)))
2421, 23eqtrd 2262 . . . . . . . . . . . . . . . . 17 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = (𝑓‘(inl‘𝑛)))
2524adantr 276 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = (𝑓‘(inl‘𝑛)))
2615, 16, 253eqtr2rd 2269 . . . . . . . . . . . . . . 15 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (𝑓‘(inl‘𝑛)) = (𝑓‘(inr‘∅)))
27 simp-4r 542 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → 𝑓:(ω ⊔ 1o)–1-1𝐴)
28 djulcl 7214 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ω → (inl‘𝑛) ∈ (ω ⊔ 1o))
2928ad2antlr 489 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔ 1o))
30 0lt1o 6584 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 1o
31 djurcl 7215 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 1o → (inr‘∅) ∈ (ω ⊔ 1o))
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . 17 (inr‘∅) ∈ (ω ⊔ 1o)
3332a1i 9 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (inr‘∅) ∈ (ω ⊔ 1o))
34 f1veqaeq 5892 . . . . . . . . . . . . . . . 16 ((𝑓:(ω ⊔ 1o)–1-1𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔ 1o) ∧ (inr‘∅) ∈ (ω ⊔ 1o))) → ((𝑓‘(inl‘𝑛)) = (𝑓‘(inr‘∅)) → (inl‘𝑛) = (inr‘∅)))
3527, 29, 33, 34syl12anc 1269 . . . . . . . . . . . . . . 15 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → ((𝑓‘(inl‘𝑛)) = (𝑓‘(inr‘∅)) → (inl‘𝑛) = (inr‘∅)))
3626, 35mpd 13 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (inl‘𝑛) = (inr‘∅))
3719adantr 276 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → 𝑛 ∈ ω)
38 djune 7241 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ω ∧ ∅ ∈ 1o) → (inl‘𝑛) ≠ (inr‘∅))
3937, 30, 38sylancl 413 . . . . . . . . . . . . . . 15 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (inl‘𝑛) ≠ (inr‘∅))
4039neneqd 2421 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → ¬ (inl‘𝑛) = (inr‘∅))
4136, 40pm2.65da 665 . . . . . . . . . . . . 13 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵)
4241ralrimiva 2603 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ∀𝑛 ∈ ω ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵)
4312ffnd 5473 . . . . . . . . . . . . 13 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓 ∘ (inl ↾ ω)) Fn ω)
44 eqeq1 2236 . . . . . . . . . . . . . . 15 (𝑠 = ((𝑓 ∘ (inl ↾ ω))‘𝑛) → (𝑠 = 𝐵 ↔ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵))
4544notbid 671 . . . . . . . . . . . . . 14 (𝑠 = ((𝑓 ∘ (inl ↾ ω))‘𝑛) → (¬ 𝑠 = 𝐵 ↔ ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵))
4645ralrn 5772 . . . . . . . . . . . . 13 ((𝑓 ∘ (inl ↾ ω)) Fn ω → (∀𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω)) ¬ 𝑠 = 𝐵 ↔ ∀𝑛 ∈ ω ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵))
4743, 46syl 14 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (∀𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω)) ¬ 𝑠 = 𝐵 ↔ ∀𝑛 ∈ ω ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵))
4842, 47mpbird 167 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ∀𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω)) ¬ 𝑠 = 𝐵)
4948r19.21bi 2618 . . . . . . . . . 10 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω))) → ¬ 𝑠 = 𝐵)
50 velsn 3683 . . . . . . . . . 10 (𝑠 ∈ {𝐵} ↔ 𝑠 = 𝐵)
5149, 50sylnibr 681 . . . . . . . . 9 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω))) → ¬ 𝑠 ∈ {𝐵})
5214, 51eldifd 3207 . . . . . . . 8 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω))) → 𝑠 ∈ (𝐴 ∖ {𝐵}))
5352ex 115 . . . . . . 7 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω)) → 𝑠 ∈ (𝐴 ∖ {𝐵})))
5453ssrdv 3230 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ran (𝑓 ∘ (inl ↾ ω)) ⊆ (𝐴 ∖ {𝐵}))
55 f1ssr 5537 . . . . . 6 (((𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴 ∧ ran (𝑓 ∘ (inl ↾ ω)) ⊆ (𝐴 ∖ {𝐵})) → (𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}))
5610, 54, 55syl2anc 411 . . . . 5 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}))
57 f1f 5530 . . . . . . 7 ((𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}) → (𝑓 ∘ (inl ↾ ω)):ω⟶(𝐴 ∖ {𝐵}))
58 omex 4684 . . . . . . 7 ω ∈ V
59 fex 5867 . . . . . . 7 (((𝑓 ∘ (inl ↾ ω)):ω⟶(𝐴 ∖ {𝐵}) ∧ ω ∈ V) → (𝑓 ∘ (inl ↾ ω)) ∈ V)
6057, 58, 59sylancl 413 . . . . . 6 ((𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}) → (𝑓 ∘ (inl ↾ ω)) ∈ V)
61 f1eq1 5525 . . . . . . 7 (𝑔 = (𝑓 ∘ (inl ↾ ω)) → (𝑔:ω–1-1→(𝐴 ∖ {𝐵}) ↔ (𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵})))
6261spcegv 2891 . . . . . 6 ((𝑓 ∘ (inl ↾ ω)) ∈ V → ((𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵})))
6360, 62mpcom 36 . . . . 5 ((𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
6456, 63syl 14 . . . 4 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
65 simpl1 1024 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6665adantr 276 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
67 simpl3 1026 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → 𝐵𝐴)
6867adantr 276 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → 𝐵𝐴)
69 simpr 110 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → 𝑓:(ω ⊔ 1o)–1-1𝐴)
7069adantr 276 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → 𝑓:(ω ⊔ 1o)–1-1𝐴)
71 simpr 110 . . . . . . 7 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → ¬ (𝑓‘(inr‘∅)) = 𝐵)
7271neqned 2407 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓‘(inr‘∅)) ≠ 𝐵)
73 eqid 2229 . . . . . 6 (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))) = (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎))))
7466, 68, 70, 72, 73difinfsnlem 7262 . . . . 5 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))):ω–1-1→(𝐴 ∖ {𝐵}))
7558mptex 5864 . . . . . 6 (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))) ∈ V
76 f1eq1 5525 . . . . . 6 (𝑔 = (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))) → (𝑔:ω–1-1→(𝐴 ∖ {𝐵}) ↔ (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))):ω–1-1→(𝐴 ∖ {𝐵})))
7775, 76spcev 2898 . . . . 5 ((𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))):ω–1-1→(𝐴 ∖ {𝐵}) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
7874, 77syl 14 . . . 4 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
79 f1f 5530 . . . . . . . . 9 (𝑓:(ω ⊔ 1o)–1-1𝐴𝑓:(ω ⊔ 1o)⟶𝐴)
8069, 79syl 14 . . . . . . . 8 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → 𝑓:(ω ⊔ 1o)⟶𝐴)
8132a1i 9 . . . . . . . 8 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → (inr‘∅) ∈ (ω ⊔ 1o))
8280, 81ffvelcdmd 5770 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → (𝑓‘(inr‘∅)) ∈ 𝐴)
8382, 67jca 306 . . . . . 6 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → ((𝑓‘(inr‘∅)) ∈ 𝐴𝐵𝐴))
84 eqeq12 2242 . . . . . . . 8 ((𝑥 = (𝑓‘(inr‘∅)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝑓‘(inr‘∅)) = 𝐵))
8584dcbid 843 . . . . . . 7 ((𝑥 = (𝑓‘(inr‘∅)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦DECID (𝑓‘(inr‘∅)) = 𝐵))
8685rspc2gv 2919 . . . . . 6 (((𝑓‘(inr‘∅)) ∈ 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝑓‘(inr‘∅)) = 𝐵))
8783, 65, 86sylc 62 . . . . 5 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → DECID (𝑓‘(inr‘∅)) = 𝐵)
88 exmiddc 841 . . . . 5 (DECID (𝑓‘(inr‘∅)) = 𝐵 → ((𝑓‘(inr‘∅)) = 𝐵 ∨ ¬ (𝑓‘(inr‘∅)) = 𝐵))
8987, 88syl 14 . . . 4 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → ((𝑓‘(inr‘∅)) = 𝐵 ∨ ¬ (𝑓‘(inr‘∅)) = 𝐵))
9064, 78, 89mpjaodan 803 . . 3 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
916, 90exlimddv 1945 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
92 reldom 6890 . . . . . 6 Rel ≼
9392brrelex2i 4762 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
94 difexg 4224 . . . . 5 (𝐴 ∈ V → (𝐴 ∖ {𝐵}) ∈ V)
9593, 94syl 14 . . . 4 (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ∈ V)
96953ad2ant2 1043 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ V)
97 brdomg 6895 . . 3 ((𝐴 ∖ {𝐵}) ∈ V → (ω ≼ (𝐴 ∖ {𝐵}) ↔ ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵})))
9896, 97syl 14 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → (ω ≼ (𝐴 ∖ {𝐵}) ↔ ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵})))
9991, 98mpbird 167 1 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wne 2400  wral 2508  Vcvv 2799  cdif 3194  wss 3197  c0 3491  ifcif 3602  {csn 3666   class class class wbr 4082  cmpt 4144  ωcom 4681  ran crn 4719  cres 4720  ccom 4722   Fn wfn 5312  wf 5313  1-1wf1 5314  cfv 5317  1oc1o 6553  cen 6883  cdom 6884  cdju 7200  inlcinl 7208  inrcinr 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247
This theorem is referenced by:  difinfinf  7264
  Copyright terms: Public domain W3C validator