ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsn GIF version

Theorem difinfsn 7228
Description: An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfsn ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴 ∖ {𝐵}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem difinfsn
Dummy variables 𝑎 𝑓 𝑔 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omp1eom 7223 . . . . 5 (ω ⊔ 1o) ≈ ω
2 simp2 1001 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
3 endomtr 6905 . . . . 5 (((ω ⊔ 1o) ≈ ω ∧ ω ≼ 𝐴) → (ω ⊔ 1o) ≼ 𝐴)
41, 2, 3sylancr 414 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → (ω ⊔ 1o) ≼ 𝐴)
5 brdomi 6861 . . . 4 ((ω ⊔ 1o) ≼ 𝐴 → ∃𝑓 𝑓:(ω ⊔ 1o)–1-1𝐴)
64, 5syl 14 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ∃𝑓 𝑓:(ω ⊔ 1o)–1-1𝐴)
7 inlresf1 7189 . . . . . . . 8 (inl ↾ ω):ω–1-1→(ω ⊔ 1o)
8 f1co 5515 . . . . . . . 8 ((𝑓:(ω ⊔ 1o)–1-1𝐴 ∧ (inl ↾ ω):ω–1-1→(ω ⊔ 1o)) → (𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴)
97, 8mpan2 425 . . . . . . 7 (𝑓:(ω ⊔ 1o)–1-1𝐴 → (𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴)
109ad2antlr 489 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴)
11 f1f 5503 . . . . . . . . . . . 12 ((𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴 → (𝑓 ∘ (inl ↾ ω)):ω⟶𝐴)
1210, 11syl 14 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓 ∘ (inl ↾ ω)):ω⟶𝐴)
1312frnd 5455 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ran (𝑓 ∘ (inl ↾ ω)) ⊆ 𝐴)
1413sselda 3201 . . . . . . . . 9 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω))) → 𝑠𝐴)
15 simpllr 534 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (𝑓‘(inr‘∅)) = 𝐵)
16 simpr 110 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵)
17 f1f 5503 . . . . . . . . . . . . . . . . . . . 20 ((inl ↾ ω):ω–1-1→(ω ⊔ 1o) → (inl ↾ ω):ω⟶(ω ⊔ 1o))
187, 17ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (inl ↾ ω):ω⟶(ω ⊔ 1o)
19 simpr 110 . . . . . . . . . . . . . . . . . . 19 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
20 fvco3 5673 . . . . . . . . . . . . . . . . . . 19 (((inl ↾ ω):ω⟶(ω ⊔ 1o) ∧ 𝑛 ∈ ω) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = (𝑓‘((inl ↾ ω)‘𝑛)))
2118, 19, 20sylancr 414 . . . . . . . . . . . . . . . . . 18 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = (𝑓‘((inl ↾ ω)‘𝑛)))
2219fvresd 5624 . . . . . . . . . . . . . . . . . . 19 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → ((inl ↾ ω)‘𝑛) = (inl‘𝑛))
2322fveq2d 5603 . . . . . . . . . . . . . . . . . 18 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → (𝑓‘((inl ↾ ω)‘𝑛)) = (𝑓‘(inl‘𝑛)))
2421, 23eqtrd 2240 . . . . . . . . . . . . . . . . 17 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = (𝑓‘(inl‘𝑛)))
2524adantr 276 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → ((𝑓 ∘ (inl ↾ ω))‘𝑛) = (𝑓‘(inl‘𝑛)))
2615, 16, 253eqtr2rd 2247 . . . . . . . . . . . . . . 15 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (𝑓‘(inl‘𝑛)) = (𝑓‘(inr‘∅)))
27 simp-4r 542 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → 𝑓:(ω ⊔ 1o)–1-1𝐴)
28 djulcl 7179 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ω → (inl‘𝑛) ∈ (ω ⊔ 1o))
2928ad2antlr 489 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔ 1o))
30 0lt1o 6549 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 1o
31 djurcl 7180 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 1o → (inr‘∅) ∈ (ω ⊔ 1o))
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . 17 (inr‘∅) ∈ (ω ⊔ 1o)
3332a1i 9 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (inr‘∅) ∈ (ω ⊔ 1o))
34 f1veqaeq 5861 . . . . . . . . . . . . . . . 16 ((𝑓:(ω ⊔ 1o)–1-1𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔ 1o) ∧ (inr‘∅) ∈ (ω ⊔ 1o))) → ((𝑓‘(inl‘𝑛)) = (𝑓‘(inr‘∅)) → (inl‘𝑛) = (inr‘∅)))
3527, 29, 33, 34syl12anc 1248 . . . . . . . . . . . . . . 15 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → ((𝑓‘(inl‘𝑛)) = (𝑓‘(inr‘∅)) → (inl‘𝑛) = (inr‘∅)))
3626, 35mpd 13 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (inl‘𝑛) = (inr‘∅))
3719adantr 276 . . . . . . . . . . . . . . . 16 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → 𝑛 ∈ ω)
38 djune 7206 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ω ∧ ∅ ∈ 1o) → (inl‘𝑛) ≠ (inr‘∅))
3937, 30, 38sylancl 413 . . . . . . . . . . . . . . 15 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → (inl‘𝑛) ≠ (inr‘∅))
4039neneqd 2399 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) ∧ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵) → ¬ (inl‘𝑛) = (inr‘∅))
4136, 40pm2.65da 663 . . . . . . . . . . . . 13 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑛 ∈ ω) → ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵)
4241ralrimiva 2581 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ∀𝑛 ∈ ω ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵)
4312ffnd 5446 . . . . . . . . . . . . 13 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓 ∘ (inl ↾ ω)) Fn ω)
44 eqeq1 2214 . . . . . . . . . . . . . . 15 (𝑠 = ((𝑓 ∘ (inl ↾ ω))‘𝑛) → (𝑠 = 𝐵 ↔ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵))
4544notbid 669 . . . . . . . . . . . . . 14 (𝑠 = ((𝑓 ∘ (inl ↾ ω))‘𝑛) → (¬ 𝑠 = 𝐵 ↔ ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵))
4645ralrn 5741 . . . . . . . . . . . . 13 ((𝑓 ∘ (inl ↾ ω)) Fn ω → (∀𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω)) ¬ 𝑠 = 𝐵 ↔ ∀𝑛 ∈ ω ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵))
4743, 46syl 14 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (∀𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω)) ¬ 𝑠 = 𝐵 ↔ ∀𝑛 ∈ ω ¬ ((𝑓 ∘ (inl ↾ ω))‘𝑛) = 𝐵))
4842, 47mpbird 167 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ∀𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω)) ¬ 𝑠 = 𝐵)
4948r19.21bi 2596 . . . . . . . . . 10 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω))) → ¬ 𝑠 = 𝐵)
50 velsn 3660 . . . . . . . . . 10 (𝑠 ∈ {𝐵} ↔ 𝑠 = 𝐵)
5149, 50sylnibr 679 . . . . . . . . 9 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω))) → ¬ 𝑠 ∈ {𝐵})
5214, 51eldifd 3184 . . . . . . . 8 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) ∧ 𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω))) → 𝑠 ∈ (𝐴 ∖ {𝐵}))
5352ex 115 . . . . . . 7 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑠 ∈ ran (𝑓 ∘ (inl ↾ ω)) → 𝑠 ∈ (𝐴 ∖ {𝐵})))
5453ssrdv 3207 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ran (𝑓 ∘ (inl ↾ ω)) ⊆ (𝐴 ∖ {𝐵}))
55 f1ssr 5510 . . . . . 6 (((𝑓 ∘ (inl ↾ ω)):ω–1-1𝐴 ∧ ran (𝑓 ∘ (inl ↾ ω)) ⊆ (𝐴 ∖ {𝐵})) → (𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}))
5610, 54, 55syl2anc 411 . . . . 5 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}))
57 f1f 5503 . . . . . . 7 ((𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}) → (𝑓 ∘ (inl ↾ ω)):ω⟶(𝐴 ∖ {𝐵}))
58 omex 4659 . . . . . . 7 ω ∈ V
59 fex 5836 . . . . . . 7 (((𝑓 ∘ (inl ↾ ω)):ω⟶(𝐴 ∖ {𝐵}) ∧ ω ∈ V) → (𝑓 ∘ (inl ↾ ω)) ∈ V)
6057, 58, 59sylancl 413 . . . . . 6 ((𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}) → (𝑓 ∘ (inl ↾ ω)) ∈ V)
61 f1eq1 5498 . . . . . . 7 (𝑔 = (𝑓 ∘ (inl ↾ ω)) → (𝑔:ω–1-1→(𝐴 ∖ {𝐵}) ↔ (𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵})))
6261spcegv 2868 . . . . . 6 ((𝑓 ∘ (inl ↾ ω)) ∈ V → ((𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵})))
6360, 62mpcom 36 . . . . 5 ((𝑓 ∘ (inl ↾ ω)):ω–1-1→(𝐴 ∖ {𝐵}) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
6456, 63syl 14 . . . 4 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ (𝑓‘(inr‘∅)) = 𝐵) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
65 simpl1 1003 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6665adantr 276 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
67 simpl3 1005 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → 𝐵𝐴)
6867adantr 276 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → 𝐵𝐴)
69 simpr 110 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → 𝑓:(ω ⊔ 1o)–1-1𝐴)
7069adantr 276 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → 𝑓:(ω ⊔ 1o)–1-1𝐴)
71 simpr 110 . . . . . . 7 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → ¬ (𝑓‘(inr‘∅)) = 𝐵)
7271neqned 2385 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → (𝑓‘(inr‘∅)) ≠ 𝐵)
73 eqid 2207 . . . . . 6 (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))) = (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎))))
7466, 68, 70, 72, 73difinfsnlem 7227 . . . . 5 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))):ω–1-1→(𝐴 ∖ {𝐵}))
7558mptex 5833 . . . . . 6 (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))) ∈ V
76 f1eq1 5498 . . . . . 6 (𝑔 = (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))) → (𝑔:ω–1-1→(𝐴 ∖ {𝐵}) ↔ (𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))):ω–1-1→(𝐴 ∖ {𝐵})))
7775, 76spcev 2875 . . . . 5 ((𝑎 ∈ ω ↦ if((𝑓‘(inl‘𝑎)) = 𝐵, (𝑓‘(inr‘∅)), (𝑓‘(inl‘𝑎)))):ω–1-1→(𝐴 ∖ {𝐵}) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
7874, 77syl 14 . . . 4 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) ∧ ¬ (𝑓‘(inr‘∅)) = 𝐵) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
79 f1f 5503 . . . . . . . . 9 (𝑓:(ω ⊔ 1o)–1-1𝐴𝑓:(ω ⊔ 1o)⟶𝐴)
8069, 79syl 14 . . . . . . . 8 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → 𝑓:(ω ⊔ 1o)⟶𝐴)
8132a1i 9 . . . . . . . 8 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → (inr‘∅) ∈ (ω ⊔ 1o))
8280, 81ffvelcdmd 5739 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → (𝑓‘(inr‘∅)) ∈ 𝐴)
8382, 67jca 306 . . . . . 6 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → ((𝑓‘(inr‘∅)) ∈ 𝐴𝐵𝐴))
84 eqeq12 2220 . . . . . . . 8 ((𝑥 = (𝑓‘(inr‘∅)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝑓‘(inr‘∅)) = 𝐵))
8584dcbid 840 . . . . . . 7 ((𝑥 = (𝑓‘(inr‘∅)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦DECID (𝑓‘(inr‘∅)) = 𝐵))
8685rspc2gv 2896 . . . . . 6 (((𝑓‘(inr‘∅)) ∈ 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝑓‘(inr‘∅)) = 𝐵))
8783, 65, 86sylc 62 . . . . 5 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → DECID (𝑓‘(inr‘∅)) = 𝐵)
88 exmiddc 838 . . . . 5 (DECID (𝑓‘(inr‘∅)) = 𝐵 → ((𝑓‘(inr‘∅)) = 𝐵 ∨ ¬ (𝑓‘(inr‘∅)) = 𝐵))
8987, 88syl 14 . . . 4 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → ((𝑓‘(inr‘∅)) = 𝐵 ∨ ¬ (𝑓‘(inr‘∅)) = 𝐵))
9064, 78, 89mpjaodan 800 . . 3 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:(ω ⊔ 1o)–1-1𝐴) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
916, 90exlimddv 1923 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵}))
92 reldom 6855 . . . . . 6 Rel ≼
9392brrelex2i 4737 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
94 difexg 4201 . . . . 5 (𝐴 ∈ V → (𝐴 ∖ {𝐵}) ∈ V)
9593, 94syl 14 . . . 4 (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ∈ V)
96953ad2ant2 1022 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ V)
97 brdomg 6860 . . 3 ((𝐴 ∖ {𝐵}) ∈ V → (ω ≼ (𝐴 ∖ {𝐵}) ↔ ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵})))
9896, 97syl 14 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → (ω ≼ (𝐴 ∖ {𝐵}) ↔ ∃𝑔 𝑔:ω–1-1→(𝐴 ∖ {𝐵})))
9991, 98mpbird 167 1 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2178  wne 2378  wral 2486  Vcvv 2776  cdif 3171  wss 3174  c0 3468  ifcif 3579  {csn 3643   class class class wbr 4059  cmpt 4121  ωcom 4656  ran crn 4694  cres 4695  ccom 4697   Fn wfn 5285  wf 5286  1-1wf1 5287  cfv 5290  1oc1o 6518  cen 6848  cdom 6849  cdju 7165  inlcinl 7173  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-dju 7166  df-inl 7175  df-inr 7176  df-case 7212
This theorem is referenced by:  difinfinf  7229
  Copyright terms: Public domain W3C validator