Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hb3an | GIF version |
Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∧ 𝜓 ∧ 𝜒). (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
hb.3 | ⊢ (𝜒 → ∀𝑥𝜒) |
Ref | Expression |
---|---|
hb3an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | hb.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | hb.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | 2, 3 | hban 1540 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
5 | hb.3 | . . 3 ⊢ (𝜒 → ∀𝑥𝜒) | |
6 | 4, 5 | hban 1540 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒)) |
7 | 1, 6 | hbxfrbi 1465 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |