| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hban | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| hban | ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hb.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | hb.2 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | 
| 4 | 19.26 1495 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: hbbi 1562 hb3an 1564 hbsbv 1960 mopick 2123 eupicka 2125 mopick2 2128 cleqh 2296 | 
| Copyright terms: Public domain | W3C validator |