Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbxfrbi | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | albii 1450 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
4 | 1, 2, 3 | 3imtr4i 200 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: hbbi 1528 hb3or 1529 hb3an 1530 hbs1f 1761 hbs1 1918 hbsbv 1921 hbeu1 2016 sb8euh 2029 hbmo1 2044 hbmo 2045 hbab1 2146 hbab 2148 cleqh 2257 hbxfreq 2264 hbral 2486 hbra1 2487 |
Copyright terms: Public domain | W3C validator |