ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbxfrbi GIF version

Theorem hbxfrbi 1460
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1 (𝜑𝜓)
hbxfrbi.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hbxfrbi (𝜑 → ∀𝑥𝜑)

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2 (𝜓 → ∀𝑥𝜓)
2 hbxfrbi.1 . 2 (𝜑𝜓)
32albii 1458 . 2 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
41, 2, 33imtr4i 200 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  hbbi  1536  hb3or  1537  hb3an  1538  hbs1f  1769  hbs1  1926  hbsbv  1929  hbeu1  2024  sb8euh  2037  hbmo1  2052  hbmo  2053  hbab1  2154  hbab  2156  cleqh  2266  hbxfreq  2273  hbral  2495  hbra1  2496
  Copyright terms: Public domain W3C validator