| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbxfrbi | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | albii 1494 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: hbbi 1572 hb3or 1573 hb3an 1574 hbs1f 1805 hbs1 1967 hbsbv 1970 hbeu1 2065 sb8euh 2078 hbmo1 2093 hbmo 2094 hbab1 2196 hbab 2198 cleqh 2307 hbxfreq 2314 hbral 2537 hbra1 2538 |
| Copyright terms: Public domain | W3C validator |