![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbxfrbi | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | albii 1470 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: hbbi 1548 hb3or 1549 hb3an 1550 hbs1f 1781 hbs1 1938 hbsbv 1941 hbeu1 2036 sb8euh 2049 hbmo1 2064 hbmo 2065 hbab1 2166 hbab 2168 cleqh 2277 hbxfreq 2284 hbral 2506 hbra1 2507 |
Copyright terms: Public domain | W3C validator |