ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbxfrbi GIF version

Theorem hbxfrbi 1465
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1 (𝜑𝜓)
hbxfrbi.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hbxfrbi (𝜑 → ∀𝑥𝜑)

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2 (𝜓 → ∀𝑥𝜓)
2 hbxfrbi.1 . 2 (𝜑𝜓)
32albii 1463 . 2 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
41, 2, 33imtr4i 200 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  hbbi  1541  hb3or  1542  hb3an  1543  hbs1f  1774  hbs1  1931  hbsbv  1934  hbeu1  2029  sb8euh  2042  hbmo1  2057  hbmo  2058  hbab1  2159  hbab  2161  cleqh  2270  hbxfreq  2277  hbral  2499  hbra1  2500
  Copyright terms: Public domain W3C validator