ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbxfrbi GIF version

Theorem hbxfrbi 1472
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1 (𝜑𝜓)
hbxfrbi.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hbxfrbi (𝜑 → ∀𝑥𝜑)

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2 (𝜓 → ∀𝑥𝜓)
2 hbxfrbi.1 . 2 (𝜑𝜓)
32albii 1470 . 2 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
41, 2, 33imtr4i 201 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  hbbi  1548  hb3or  1549  hb3an  1550  hbs1f  1781  hbs1  1938  hbsbv  1941  hbeu1  2036  sb8euh  2049  hbmo1  2064  hbmo  2065  hbab1  2166  hbab  2168  cleqh  2277  hbxfreq  2284  hbral  2506  hbra1  2507
  Copyright terms: Public domain W3C validator