| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbxfrbi | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | albii 1493 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: hbbi 1571 hb3or 1572 hb3an 1573 hbs1f 1804 hbs1 1966 hbsbv 1969 hbeu1 2064 sb8euh 2077 hbmo1 2092 hbmo 2093 hbab1 2194 hbab 2196 cleqh 2305 hbxfreq 2312 hbral 2535 hbra1 2536 |
| Copyright terms: Public domain | W3C validator |