![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbn1 | GIF version |
Description: 𝑥 is not free in ¬ ∀𝑥𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.) |
Ref | Expression |
---|---|
hbn1 | ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6b 1593 | 1 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1294 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-5 1388 ax-gen 1390 ax-ie2 1435 ax-ial 1479 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-fal 1302 |
This theorem is referenced by: modal-5 1602 dvelimfALT2 1752 |
Copyright terms: Public domain | W3C validator |