| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimfALT2 | GIF version | ||
| Description: Proof of dvelimf 2066 using dveeq2 1861 (shown as the last hypothesis) instead of ax12 1558. This shows that ax12 1558 could be replaced by dveeq2 1861 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.) |
| Ref | Expression |
|---|---|
| dvelimfALT2.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| dvelimfALT2.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
| dvelimfALT2.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
| dvelimfALT2.4 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
| Ref | Expression |
|---|---|
| dvelimfALT2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | hbn1 1698 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) | |
| 3 | dvelimfALT2.4 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
| 4 | dvelimfALT2.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
| 6 | 2, 3, 5 | hbimd 1619 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑧 = 𝑦 → 𝜑) → ∀𝑥(𝑧 = 𝑦 → 𝜑))) |
| 7 | 1, 6 | hbald 1537 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
| 8 | dvelimfALT2.2 | . . 3 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 9 | dvelimfALT2.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 10 | 8, 9 | equsalh 1772 | . 2 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
| 11 | 10 | albii 1516 | . 2 ⊢ (∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑥𝜓) |
| 12 | 7, 10, 11 | 3imtr3g 204 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |