ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimfALT2 GIF version

Theorem dvelimfALT2 1815
Description: Proof of dvelimf 2013 using dveeq2 1813 (shown as the last hypothesis) instead of ax12 1510. This shows that ax12 1510 could be replaced by dveeq2 1813 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.)
Hypotheses
Ref Expression
dvelimfALT2.1 (𝜑 → ∀𝑥𝜑)
dvelimfALT2.2 (𝜓 → ∀𝑧𝜓)
dvelimfALT2.3 (𝑧 = 𝑦 → (𝜑𝜓))
dvelimfALT2.4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
Assertion
Ref Expression
dvelimfALT2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem dvelimfALT2
StepHypRef Expression
1 ax-17 1524 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
2 hbn1 1650 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
3 dvelimfALT2.4 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
4 dvelimfALT2.1 . . . . 5 (𝜑 → ∀𝑥𝜑)
54a1i 9 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
62, 3, 5hbimd 1571 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑧 = 𝑦𝜑) → ∀𝑥(𝑧 = 𝑦𝜑)))
71, 6hbald 1489 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑)))
8 dvelimfALT2.2 . . 3 (𝜓 → ∀𝑧𝜓)
9 dvelimfALT2.3 . . 3 (𝑧 = 𝑦 → (𝜑𝜓))
108, 9equsalh 1724 . 2 (∀𝑧(𝑧 = 𝑦𝜑) ↔ 𝜓)
1110albii 1468 . 2 (∀𝑥𝑧(𝑧 = 𝑦𝜑) ↔ ∀𝑥𝜓)
127, 10, 113imtr3g 204 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1351   = wceq 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator