ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimfALT2 GIF version

Theorem dvelimfALT2 1810
Description: Proof of dvelimf 2008 using dveeq2 1808 (shown as the last hypothesis) instead of ax12 1505. This shows that ax12 1505 could be replaced by dveeq2 1808 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.)
Hypotheses
Ref Expression
dvelimfALT2.1 (𝜑 → ∀𝑥𝜑)
dvelimfALT2.2 (𝜓 → ∀𝑧𝜓)
dvelimfALT2.3 (𝑧 = 𝑦 → (𝜑𝜓))
dvelimfALT2.4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
Assertion
Ref Expression
dvelimfALT2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem dvelimfALT2
StepHypRef Expression
1 ax-17 1519 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
2 hbn1 1645 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
3 dvelimfALT2.4 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
4 dvelimfALT2.1 . . . . 5 (𝜑 → ∀𝑥𝜑)
54a1i 9 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
62, 3, 5hbimd 1566 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑧 = 𝑦𝜑) → ∀𝑥(𝑧 = 𝑦𝜑)))
71, 6hbald 1484 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑)))
8 dvelimfALT2.2 . . 3 (𝜓 → ∀𝑧𝜓)
9 dvelimfALT2.3 . . 3 (𝑧 = 𝑦 → (𝜑𝜓))
108, 9equsalh 1719 . 2 (∀𝑧(𝑧 = 𝑦𝜑) ↔ 𝜓)
1110albii 1463 . 2 (∀𝑥𝑧(𝑧 = 𝑦𝜑) ↔ ∀𝑥𝜓)
127, 10, 113imtr3g 203 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1346   = wceq 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator