Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvelimfALT2 | GIF version |
Description: Proof of dvelimf 2003 using dveeq2 1803 (shown as the last hypothesis) instead of ax12 1500. This shows that ax12 1500 could be replaced by dveeq2 1803 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.) |
Ref | Expression |
---|---|
dvelimfALT2.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
dvelimfALT2.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
dvelimfALT2.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
dvelimfALT2.4 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
Ref | Expression |
---|---|
dvelimfALT2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | hbn1 1640 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) | |
3 | dvelimfALT2.4 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
4 | dvelimfALT2.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
5 | 4 | a1i 9 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
6 | 2, 3, 5 | hbimd 1561 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑧 = 𝑦 → 𝜑) → ∀𝑥(𝑧 = 𝑦 → 𝜑))) |
7 | 1, 6 | hbald 1479 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
8 | dvelimfALT2.2 | . . 3 ⊢ (𝜓 → ∀𝑧𝜓) | |
9 | dvelimfALT2.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
10 | 8, 9 | equsalh 1714 | . 2 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
11 | 10 | albii 1458 | . 2 ⊢ (∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑥𝜓) |
12 | 7, 10, 11 | 3imtr3g 203 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |