Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvelimfALT2 | GIF version |
Description: Proof of dvelimf 2013 using dveeq2 1813 (shown as the last hypothesis) instead of ax12 1510. This shows that ax12 1510 could be replaced by dveeq2 1813 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.) |
Ref | Expression |
---|---|
dvelimfALT2.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
dvelimfALT2.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
dvelimfALT2.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
dvelimfALT2.4 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
Ref | Expression |
---|---|
dvelimfALT2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1524 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | hbn1 1650 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) | |
3 | dvelimfALT2.4 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
4 | dvelimfALT2.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
5 | 4 | a1i 9 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
6 | 2, 3, 5 | hbimd 1571 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑧 = 𝑦 → 𝜑) → ∀𝑥(𝑧 = 𝑦 → 𝜑))) |
7 | 1, 6 | hbald 1489 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
8 | dvelimfALT2.2 | . . 3 ⊢ (𝜓 → ∀𝑧𝜓) | |
9 | dvelimfALT2.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
10 | 8, 9 | equsalh 1724 | . 2 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
11 | 10 | albii 1468 | . 2 ⊢ (∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑥𝜓) |
12 | 7, 10, 11 | 3imtr3g 204 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |