| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimfALT2 | GIF version | ||
| Description: Proof of dvelimf 2044 using dveeq2 1839 (shown as the last hypothesis) instead of ax12 1536. This shows that ax12 1536 could be replaced by dveeq2 1839 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.) |
| Ref | Expression |
|---|---|
| dvelimfALT2.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| dvelimfALT2.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
| dvelimfALT2.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
| dvelimfALT2.4 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
| Ref | Expression |
|---|---|
| dvelimfALT2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | hbn1 1676 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) | |
| 3 | dvelimfALT2.4 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
| 4 | dvelimfALT2.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
| 6 | 2, 3, 5 | hbimd 1597 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑧 = 𝑦 → 𝜑) → ∀𝑥(𝑧 = 𝑦 → 𝜑))) |
| 7 | 1, 6 | hbald 1515 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
| 8 | dvelimfALT2.2 | . . 3 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 9 | dvelimfALT2.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 10 | 8, 9 | equsalh 1750 | . 2 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
| 11 | 10 | albii 1494 | . 2 ⊢ (∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑥𝜓) |
| 12 | 7, 10, 11 | 3imtr3g 204 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |