ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbnt GIF version

Theorem hbnt 1646
Description: Closed theorem version of bound-variable hypothesis builder hbn 1647. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Assertion
Ref Expression
hbnt (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))

Proof of Theorem hbnt
StepHypRef Expression
1 ax-4 1503 . . . 4 (∀𝑥𝜑𝜑)
21con3i 627 . . 3 𝜑 → ¬ ∀𝑥𝜑)
3 ax6b 1644 . . 3 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
42, 3syl 14 . 2 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
5 con3 637 . . 3 ((𝜑 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝜑))
65al2imi 1451 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
74, 6syl5 32 1 (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  hbn  1647  hbnd  1648  nfnt  1649
  Copyright terms: Public domain W3C validator