| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbnt | GIF version | ||
| Description: Closed theorem version of bound-variable hypothesis builder hbn 1668. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| hbnt | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1524 | . . . 4 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | 1 | con3i 633 | . . 3 ⊢ (¬ 𝜑 → ¬ ∀𝑥𝜑) |
| 3 | ax6b 1665 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| 5 | con3 643 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝜑)) | |
| 6 | 5 | al2imi 1472 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) |
| 7 | 4, 6 | syl5 32 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: hbn 1668 hbnd 1669 nfnt 1670 |
| Copyright terms: Public domain | W3C validator |