Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbnt | GIF version |
Description: Closed theorem version of bound-variable hypothesis builder hbn 1642. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
hbnt | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1498 | . . . 4 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | 1 | con3i 622 | . . 3 ⊢ (¬ 𝜑 → ¬ ∀𝑥𝜑) |
3 | ax6b 1639 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
5 | con3 632 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝜑)) | |
6 | 5 | al2imi 1446 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) |
7 | 4, 6 | syl5 32 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: hbn 1642 hbnd 1643 nfnt 1644 |
Copyright terms: Public domain | W3C validator |