ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifp2 GIF version

Theorem ifp2 986
Description: Forward direction of dfifp2dc 987. This direction does not require decidability. (Contributed by Jim Kingdon, 25-Jan-2026.)
Assertion
Ref Expression
ifp2 (if-(𝜑, 𝜓, 𝜒) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))

Proof of Theorem ifp2
StepHypRef Expression
1 df-ifp 984 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
2 pm3.4 333 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
3 pm2.24 624 . . . . 5 (𝜑 → (¬ 𝜑𝜒))
43adantr 276 . . . 4 ((𝜑𝜓) → (¬ 𝜑𝜒))
52, 4jca 306 . . 3 ((𝜑𝜓) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
6 ax-in2 618 . . . . 5 𝜑 → (𝜑𝜓))
76adantr 276 . . . 4 ((¬ 𝜑𝜒) → (𝜑𝜓))
8 pm3.4 333 . . . 4 ((¬ 𝜑𝜒) → (¬ 𝜑𝜒))
97, 8jca 306 . . 3 ((¬ 𝜑𝜒) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
105, 9jaoi 721 . 2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
111, 10sylbi 121 1 (if-(𝜑, 𝜓, 𝜒) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-ifp 984
This theorem is referenced by:  dfifp2dc  987
  Copyright terms: Public domain W3C validator