| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifp2 | GIF version | ||
| Description: Forward direction of dfifp2dc 987. This direction does not require decidability. (Contributed by Jim Kingdon, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| ifp2 | ⊢ (if-(𝜑, 𝜓, 𝜒) → ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ifp 984 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
| 2 | pm3.4 333 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 → 𝜓)) | |
| 3 | pm2.24 624 | . . . . 5 ⊢ (𝜑 → (¬ 𝜑 → 𝜒)) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (¬ 𝜑 → 𝜒)) |
| 5 | 2, 4 | jca 306 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
| 6 | ax-in2 618 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((¬ 𝜑 ∧ 𝜒) → (𝜑 → 𝜓)) |
| 8 | pm3.4 333 | . . . 4 ⊢ ((¬ 𝜑 ∧ 𝜒) → (¬ 𝜑 → 𝜒)) | |
| 9 | 7, 8 | jca 306 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜒) → ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
| 10 | 5, 9 | jaoi 721 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) → ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
| 11 | 1, 10 | sylbi 121 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) → ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 if-wif 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-ifp 984 |
| This theorem is referenced by: dfifp2dc 987 |
| Copyright terms: Public domain | W3C validator |