ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifp2 Unicode version

Theorem ifp2 986
Description: Forward direction of dfifp2dc 987. This direction does not require decidability. (Contributed by Jim Kingdon, 25-Jan-2026.)
Assertion
Ref Expression
ifp2  |-  (if- (
ph ,  ps ,  ch )  ->  ( (
ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )

Proof of Theorem ifp2
StepHypRef Expression
1 df-ifp 984 . 2  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ch )
) )
2 pm3.4 333 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ph  ->  ps ) )
3 pm2.24 624 . . . . 5  |-  ( ph  ->  ( -.  ph  ->  ch ) )
43adantr 276 . . . 4  |-  ( (
ph  /\  ps )  ->  ( -.  ph  ->  ch ) )
52, 4jca 306 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ph  ->  ps )  /\  ( -. 
ph  ->  ch ) ) )
6 ax-in2 618 . . . . 5  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
76adantr 276 . . . 4  |-  ( ( -.  ph  /\  ch )  ->  ( ph  ->  ps ) )
8 pm3.4 333 . . . 4  |-  ( ( -.  ph  /\  ch )  ->  ( -.  ph  ->  ch ) )
97, 8jca 306 . . 3  |-  ( ( -.  ph  /\  ch )  ->  ( ( ph  ->  ps )  /\  ( -. 
ph  ->  ch ) ) )
105, 9jaoi 721 . 2  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ch ) )  -> 
( ( ph  ->  ps )  /\  ( -. 
ph  ->  ch ) ) )
111, 10sylbi 121 1  |-  (if- (
ph ,  ps ,  ch )  ->  ( (
ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-ifp 984
This theorem is referenced by:  dfifp2dc  987
  Copyright terms: Public domain W3C validator