ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpdc GIF version

Theorem ifpdc 985
Description: The conditional operator for propositions implies decidability. (Contributed by Jim Kingdon, 25-Jan-2026.)
Assertion
Ref Expression
ifpdc (if-(𝜑, 𝜓, 𝜒) → DECID 𝜑)

Proof of Theorem ifpdc
StepHypRef Expression
1 simpl 109 . . 3 ((𝜑𝜓) → 𝜑)
2 simpl 109 . . 3 ((¬ 𝜑𝜒) → ¬ 𝜑)
31, 2orim12i 764 . 2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) → (𝜑 ∨ ¬ 𝜑))
4 df-ifp 984 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
5 df-dc 840 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
63, 4, 53imtr4i 201 1 (if-(𝜑, 𝜓, 𝜒) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by:  ifpnst  994
  Copyright terms: Public domain W3C validator