| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifpdc | GIF version | ||
| Description: The conditional operator for propositions implies decidability. (Contributed by Jim Kingdon, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| ifpdc | ⊢ (if-(𝜑, 𝜓, 𝜒) → DECID 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | simpl 109 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜒) → ¬ 𝜑) | |
| 3 | 1, 2 | orim12i 764 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) → (𝜑 ∨ ¬ 𝜑)) |
| 4 | df-ifp 984 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
| 5 | df-dc 840 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) → DECID 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 if-wif 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ifp 984 |
| This theorem is referenced by: ifpnst 994 |
| Copyright terms: Public domain | W3C validator |