ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfifp2dc GIF version

Theorem dfifp2dc 987
Description: Alternate definition of the conditional operator for decidable propositions. The value of if-(𝜑, 𝜓, 𝜒) is "if 𝜑 then 𝜓, and if not 𝜑 then 𝜒". This is the definition used in Section II.24 of [Church] p. 129 (Definition D12 page 132) (see comment of df-ifp 984). (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
dfifp2dc (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))))

Proof of Theorem dfifp2dc
StepHypRef Expression
1 ifp2 986 . 2 (if-(𝜑, 𝜓, 𝜒) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
2 exmiddc 841 . . . . 5 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
3 simpl 109 . . . . . . . 8 ((𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → 𝜑)
4 simprl 529 . . . . . . . 8 ((𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → (𝜑𝜓))
53, 4jcai 311 . . . . . . 7 ((𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → (𝜑𝜓))
65orcd 738 . . . . . 6 ((𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
7 simpl 109 . . . . . . . 8 ((¬ 𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → ¬ 𝜑)
8 simprr 531 . . . . . . . 8 ((¬ 𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → (¬ 𝜑𝜒))
97, 8jcai 311 . . . . . . 7 ((¬ 𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → (¬ 𝜑𝜒))
109olcd 739 . . . . . 6 ((¬ 𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
116, 10jaoian 800 . . . . 5 (((𝜑 ∨ ¬ 𝜑) ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
122, 11sylan 283 . . . 4 ((DECID 𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
13 df-ifp 984 . . . 4 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
1412, 13sylibr 134 . . 3 ((DECID 𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → if-(𝜑, 𝜓, 𝜒))
1514ex 115 . 2 (DECID 𝜑 → (((𝜑𝜓) ∧ (¬ 𝜑𝜒)) → if-(𝜑, 𝜓, 𝜒)))
161, 15impbid2 143 1 (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by:  dfifp3dc  988  dfifp5dc  990  ifpdfbidc  991
  Copyright terms: Public domain W3C validator