Proof of Theorem dfifp2dc
| Step | Hyp | Ref
| Expression |
| 1 | | ifp2 986 |
. 2
⊢
(if-(𝜑, 𝜓, 𝜒) → ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
| 2 | | exmiddc 841 |
. . . . 5
⊢
(DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) |
| 3 | | simpl 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → 𝜑) |
| 4 | | simprl 529 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → (𝜑 → 𝜓)) |
| 5 | 3, 4 | jcai 311 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → (𝜑 ∧ 𝜓)) |
| 6 | 5 | orcd 738 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) |
| 7 | | simpl 109 |
. . . . . . . 8
⊢ ((¬
𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → ¬ 𝜑) |
| 8 | | simprr 531 |
. . . . . . . 8
⊢ ((¬
𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → (¬ 𝜑 → 𝜒)) |
| 9 | 7, 8 | jcai 311 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → (¬ 𝜑 ∧ 𝜒)) |
| 10 | 9 | olcd 739 |
. . . . . 6
⊢ ((¬
𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) |
| 11 | 6, 10 | jaoian 800 |
. . . . 5
⊢ (((𝜑 ∨ ¬ 𝜑) ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) |
| 12 | 2, 11 | sylan 283 |
. . . 4
⊢
((DECID 𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) |
| 13 | | df-ifp 984 |
. . . 4
⊢
(if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) |
| 14 | 12, 13 | sylibr 134 |
. . 3
⊢
((DECID 𝜑 ∧ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) → if-(𝜑, 𝜓, 𝜒)) |
| 15 | 14 | ex 115 |
. 2
⊢
(DECID 𝜑 → (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒)) → if-(𝜑, 𝜓, 𝜒))) |
| 16 | 1, 15 | impbid2 143 |
1
⊢
(DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒)))) |