| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifpbi123d | GIF version | ||
| Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 17-Apr-2024.) |
| Ref | Expression |
|---|---|
| ifpbi123d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| ifpbi123d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜂)) |
| ifpbi123d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| ifpbi123d | ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpbi123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) | |
| 2 | ifpbi123d.2 | . . . 4 ⊢ (𝜑 → (𝜒 ↔ 𝜂)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜏 ∧ 𝜂))) |
| 4 | 1 | notbid 671 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜏)) |
| 5 | ifpbi123d.3 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜁)) | |
| 6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((¬ 𝜓 ∧ 𝜃) ↔ (¬ 𝜏 ∧ 𝜁))) |
| 7 | 3, 6 | orbi12d 798 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∨ (¬ 𝜓 ∧ 𝜃)) ↔ ((𝜏 ∧ 𝜂) ∨ (¬ 𝜏 ∧ 𝜁)))) |
| 8 | df-ifp 984 | . 2 ⊢ (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓 ∧ 𝜒) ∨ (¬ 𝜓 ∧ 𝜃))) | |
| 9 | df-ifp 984 | . 2 ⊢ (if-(𝜏, 𝜂, 𝜁) ↔ ((𝜏 ∧ 𝜂) ∨ (¬ 𝜏 ∧ 𝜁))) | |
| 10 | 7, 8, 9 | 3bitr4g 223 | 1 ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 if-wif 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-ifp 984 |
| This theorem is referenced by: ifpbi23d 999 |
| Copyright terms: Public domain | W3C validator |