ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wkslem1 GIF version

Theorem wkslem1 16026
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))

Proof of Theorem wkslem1
StepHypRef Expression
1 fveq2 5626 . . 3 (𝐴 = 𝐵 → (𝑃𝐴) = (𝑃𝐵))
2 fvoveq1 6023 . . 3 (𝐴 = 𝐵 → (𝑃‘(𝐴 + 1)) = (𝑃‘(𝐵 + 1)))
31, 2eqeq12d 2244 . 2 (𝐴 = 𝐵 → ((𝑃𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃𝐵) = (𝑃‘(𝐵 + 1))))
4 2fveq3 5631 . . 3 (𝐴 = 𝐵 → (𝐼‘(𝐹𝐴)) = (𝐼‘(𝐹𝐵)))
51sneqd 3679 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴)} = {(𝑃𝐵)})
64, 5eqeq12d 2244 . 2 (𝐴 = 𝐵 → ((𝐼‘(𝐹𝐴)) = {(𝑃𝐴)} ↔ (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}))
71, 2preq12d 3751 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃𝐵), (𝑃‘(𝐵 + 1))})
87, 4sseq12d 3255 . 2 (𝐴 = 𝐵 → ({(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴)) ↔ {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵))))
93, 6, 8ifpbi123d 998 1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  if-wif 983   = wceq 1395  wss 3197  {csn 3666  {cpr 3667  cfv 5317  (class class class)co 6000  1c1 7996   + caddc 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-ifp 984  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator