ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpbi123d Unicode version

Theorem ifpbi123d 998
Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 17-Apr-2024.)
Hypotheses
Ref Expression
ifpbi123d.1  |-  ( ph  ->  ( ps  <->  ta )
)
ifpbi123d.2  |-  ( ph  ->  ( ch  <->  et )
)
ifpbi123d.3  |-  ( ph  ->  ( th  <->  ze )
)
Assertion
Ref Expression
ifpbi123d  |-  ( ph  ->  (if- ( ps ,  ch ,  th )  <-> if- ( ta ,  et ,  ze ) ) )

Proof of Theorem ifpbi123d
StepHypRef Expression
1 ifpbi123d.1 . . . 4  |-  ( ph  ->  ( ps  <->  ta )
)
2 ifpbi123d.2 . . . 4  |-  ( ph  ->  ( ch  <->  et )
)
31, 2anbi12d 473 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  <->  ( ta  /\  et ) ) )
41notbid 671 . . . 4  |-  ( ph  ->  ( -.  ps  <->  -.  ta )
)
5 ifpbi123d.3 . . . 4  |-  ( ph  ->  ( th  <->  ze )
)
64, 5anbi12d 473 . . 3  |-  ( ph  ->  ( ( -.  ps  /\ 
th )  <->  ( -.  ta  /\  ze ) ) )
73, 6orbi12d 798 . 2  |-  ( ph  ->  ( ( ( ps 
/\  ch )  \/  ( -.  ps  /\  th )
)  <->  ( ( ta 
/\  et )  \/  ( -.  ta  /\  ze ) ) ) )
8 df-ifp 984 . 2  |-  (if- ( ps ,  ch ,  th )  <->  ( ( ps 
/\  ch )  \/  ( -.  ps  /\  th )
) )
9 df-ifp 984 . 2  |-  (if- ( ta ,  et ,  ze )  <->  ( ( ta 
/\  et )  \/  ( -.  ta  /\  ze ) ) )
107, 8, 93bitr4g 223 1  |-  ( ph  ->  (if- ( ps ,  ch ,  th )  <-> if- ( ta ,  et ,  ze ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-ifp 984
This theorem is referenced by:  ifpbi23d  999
  Copyright terms: Public domain W3C validator