| Step | Hyp | Ref
| Expression |
| 1 | | wlkres.d |
. . . . 5
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 2 | | wlkres.i |
. . . . . 6
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | 2 | wlkf 16051 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 4 | 1, 3 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 5 | | wlkres.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| 6 | | elfzonn0 10394 |
. . . . 5
⊢ (𝑁 ∈
(0..^(♯‘𝐹))
→ 𝑁 ∈
ℕ0) |
| 7 | 5, 6 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 8 | | pfxwrdsymbg 11230 |
. . . 4
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ℕ0) → (𝐹 prefix 𝑁) ∈ Word (𝐹 “ (0..^𝑁))) |
| 9 | 4, 7, 8 | syl2anc 411 |
. . 3
⊢ (𝜑 → (𝐹 prefix 𝑁) ∈ Word (𝐹 “ (0..^𝑁))) |
| 10 | | wlkres.h |
. . . 4
⊢ 𝐻 = (𝐹 prefix 𝑁) |
| 11 | 10 | a1i 9 |
. . 3
⊢ (𝜑 → 𝐻 = (𝐹 prefix 𝑁)) |
| 12 | | wlkres.e |
. . . . . 6
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 13 | 12 | dmeqd 4925 |
. . . . 5
⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 14 | | wrdf 11085 |
. . . . . . 7
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
| 15 | | fimass 5489 |
. . . . . . 7
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
| 16 | 4, 14, 15 | 3syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
| 17 | | ssdmres 5027 |
. . . . . 6
⊢ ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) |
| 18 | 16, 17 | sylib 122 |
. . . . 5
⊢ (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) |
| 19 | 13, 18 | eqtrd 2262 |
. . . 4
⊢ (𝜑 → dom (iEdg‘𝑆) = (𝐹 “ (0..^𝑁))) |
| 20 | | wrdeq 11101 |
. . . 4
⊢ (dom
(iEdg‘𝑆) = (𝐹 “ (0..^𝑁)) → Word dom (iEdg‘𝑆) = Word (𝐹 “ (0..^𝑁))) |
| 21 | 19, 20 | syl 14 |
. . 3
⊢ (𝜑 → Word dom (iEdg‘𝑆) = Word (𝐹 “ (0..^𝑁))) |
| 22 | 9, 11, 21 | 3eltr4d 2313 |
. 2
⊢ (𝜑 → 𝐻 ∈ Word dom (iEdg‘𝑆)) |
| 23 | | wlkres.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 24 | 23 | wlkp 16055 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 25 | 1, 24 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 26 | | wlkres.s |
. . . . . . 7
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 27 | 26 | feq3d 5462 |
. . . . . 6
⊢ (𝜑 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
| 28 | 25, 27 | mpbird 167 |
. . . . 5
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)) |
| 29 | | fzossfz 10370 |
. . . . . . 7
⊢
(0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
| 30 | 29, 5 | sselid 3222 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
| 31 | | elfzuz3 10226 |
. . . . . 6
⊢ (𝑁 ∈
(0...(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘𝑁)) |
| 32 | | fzss2 10268 |
. . . . . 6
⊢
((♯‘𝐹)
∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...(♯‘𝐹))) |
| 33 | 30, 31, 32 | 3syl 17 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ⊆ (0...(♯‘𝐹))) |
| 34 | 28, 33 | fssresd 5504 |
. . . 4
⊢ (𝜑 → (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆)) |
| 35 | 10 | fveq2i 5632 |
. . . . . . 7
⊢
(♯‘𝐻) =
(♯‘(𝐹 prefix
𝑁)) |
| 36 | | pfxlen 11225 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
| 37 | 4, 30, 36 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
| 38 | 35, 37 | eqtrid 2274 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐻) = 𝑁) |
| 39 | 38 | oveq2d 6023 |
. . . . 5
⊢ (𝜑 → (0...(♯‘𝐻)) = (0...𝑁)) |
| 40 | 39 | feq2d 5461 |
. . . 4
⊢ (𝜑 → ((𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆))) |
| 41 | 34, 40 | mpbird 167 |
. . 3
⊢ (𝜑 → (𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆)) |
| 42 | | wlkres.q |
. . . 4
⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
| 43 | 42 | feq1i 5466 |
. . 3
⊢ (𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆)) |
| 44 | 41, 43 | sylibr 134 |
. 2
⊢ (𝜑 → 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆)) |
| 45 | 23, 2 | wlkprop 16048 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 46 | 1, 45 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 47 | 46 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 48 | 38 | oveq2d 6023 |
. . . . . . . . . . 11
⊢ (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁)) |
| 49 | 48 | eleq2d 2299 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) ↔ 𝑥 ∈ (0..^𝑁))) |
| 50 | 42 | fveq1i 5630 |
. . . . . . . . . . . . 13
⊢ (𝑄‘𝑥) = ((𝑃 ↾ (0...𝑁))‘𝑥) |
| 51 | | fzossfz 10370 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝑁) ⊆
(0...𝑁) |
| 52 | 51 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0..^𝑁) ⊆ (0...𝑁)) |
| 53 | 52 | sselda 3224 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0...𝑁)) |
| 54 | 53 | fvresd 5654 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘𝑥) = (𝑃‘𝑥)) |
| 55 | 50, 54 | eqtr2id 2275 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑃‘𝑥) = (𝑄‘𝑥)) |
| 56 | 42 | fveq1i 5630 |
. . . . . . . . . . . . 13
⊢ (𝑄‘(𝑥 + 1)) = ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) |
| 57 | | fzofzp1 10441 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁)) |
| 58 | 57 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁)) |
| 59 | 58 | fvresd 5654 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) = (𝑃‘(𝑥 + 1))) |
| 60 | 56, 59 | eqtr2id 2275 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) |
| 61 | 55, 60 | jca 306 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))) |
| 62 | 61 | ex 115 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))) |
| 63 | 49, 62 | sylbid 150 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))) |
| 64 | 63 | imp 124 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))) |
| 65 | 4 | ancli 323 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝜑 ∧ 𝐹 ∈ Word dom 𝐼)) |
| 66 | 14 | ffund 5477 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐼 → Fun 𝐹) |
| 67 | 66 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) → Fun 𝐹) |
| 68 | 67 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → Fun 𝐹) |
| 69 | | fdm 5479 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 70 | | elfzouz2 10366 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈
(0..^(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘𝑁)) |
| 71 | | fzoss2 10378 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝐹)
∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
| 72 | 5, 70, 71 | 3syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
| 73 | | sseq2 3248 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
𝐹 =
(0..^(♯‘𝐹))
→ ((0..^𝑁) ⊆ dom
𝐹 ↔ (0..^𝑁) ⊆
(0..^(♯‘𝐹)))) |
| 74 | 72, 73 | imbitrrid 156 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
𝐹 =
(0..^(♯‘𝐹))
→ (𝜑 → (0..^𝑁) ⊆ dom 𝐹)) |
| 75 | 14, 69, 74 | 3syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐼 → (𝜑 → (0..^𝑁) ⊆ dom 𝐹)) |
| 76 | 75 | impcom 125 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) → (0..^𝑁) ⊆ dom 𝐹) |
| 77 | 76 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ dom 𝐹) |
| 78 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) |
| 79 | 68, 77, 78 | resfvresima 5880 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
| 80 | 65, 79 | sylan 283 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
| 81 | 80 | eqcomd 2235 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 82 | 81 | ex 115 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))) |
| 83 | 49, 82 | sylbid 150 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))) |
| 84 | 83 | imp 124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 85 | 12 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 86 | 10 | fveq1i 5630 |
. . . . . . . . . . 11
⊢ (𝐻‘𝑥) = ((𝐹 prefix 𝑁)‘𝑥) |
| 87 | 4 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → 𝐹 ∈ Word dom 𝐼) |
| 88 | 30 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → 𝑁 ∈ (0...(♯‘𝐹))) |
| 89 | | pfxres 11221 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
| 90 | 87, 88, 89 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
| 91 | 90 | fveq1d 5631 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → ((𝐹 prefix 𝑁)‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
| 92 | 86, 91 | eqtrid 2274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐻‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
| 93 | 85, 92 | fveq12d 5636 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → ((iEdg‘𝑆)‘(𝐻‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
| 94 | 84, 93 | eqtr4d 2265 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) |
| 95 | 64, 94 | jca 306 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
| 96 | 5, 70 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐹) ∈
(ℤ≥‘𝑁)) |
| 97 | 38 | fveq2d 5633 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(♯‘𝐻)) = (ℤ≥‘𝑁)) |
| 98 | 96, 97 | eleqtrrd 2309 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐹) ∈
(ℤ≥‘(♯‘𝐻))) |
| 99 | | fzoss2 10378 |
. . . . . . . . . 10
⊢
((♯‘𝐹)
∈ (ℤ≥‘(♯‘𝐻)) → (0..^(♯‘𝐻)) ⊆
(0..^(♯‘𝐹))) |
| 100 | 98, 99 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(♯‘𝐻)) ⊆
(0..^(♯‘𝐹))) |
| 101 | 100 | sselda 3224 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → 𝑥 ∈ (0..^(♯‘𝐹))) |
| 102 | | wkslem1 16041 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
| 103 | 102 | rspcv 2903 |
. . . . . . . 8
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
| 104 | 101, 103 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
| 105 | | eqeq12 2242 |
. . . . . . . . . 10
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → ((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄‘𝑥) = (𝑄‘(𝑥 + 1)))) |
| 106 | 105 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄‘𝑥) = (𝑄‘(𝑥 + 1)))) |
| 107 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) |
| 108 | | sneq 3677 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑥) = (𝑄‘𝑥) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
| 109 | 108 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
| 110 | 109 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
| 111 | 107, 110 | eqeq12d 2244 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)} ↔ ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)})) |
| 112 | | preq12 3745 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))}) |
| 113 | 112 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))}) |
| 114 | 113, 107 | sseq12d 3255 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥)) ↔ {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
| 115 | 106, 111,
114 | ifpbi123d 998 |
. . . . . . . 8
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))) ↔ if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 116 | 115 | biimpd 144 |
. . . . . . 7
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 117 | 95, 104, 116 | sylsyld 58 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 118 | 117 | com12 30 |
. . . . 5
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 119 | 118 | 3ad2ant3 1044 |
. . . 4
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
| 120 | 47, 119 | mpcom 36 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
| 121 | 120 | ralrimiva 2603 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
| 122 | 23, 2, 1, 5, 26 | wlkreslem 16097 |
. . 3
⊢ (𝜑 → 𝑆 ∈ V) |
| 123 | | eqid 2229 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 124 | | eqid 2229 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
| 125 | 123, 124 | iswlkg 16050 |
. . 3
⊢ (𝑆 ∈ V → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))))) |
| 126 | 122, 125 | syl 14 |
. 2
⊢ (𝜑 → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))))) |
| 127 | 22, 44, 121, 126 | mpbir3and 1204 |
1
⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |