| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifpiddc | GIF version | ||
| Description: Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifiddc 3638. (Contributed by BJ, 20-Sep-2019.) |
| Ref | Expression |
|---|---|
| ifpiddc | ⊢ (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 841 | . 2 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 2 | ifptru 995 | . . 3 ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)) | |
| 3 | ifpfal 996 | . . 3 ⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)) | |
| 4 | 2, 3 | jaoi 721 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 713 DECID wdc 839 if-wif 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ifp 984 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |