ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpiddc GIF version

Theorem ifpiddc 997
Description: Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifiddc 3638. (Contributed by BJ, 20-Sep-2019.)
Assertion
Ref Expression
ifpiddc (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))

Proof of Theorem ifpiddc
StepHypRef Expression
1 exmiddc 841 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 ifptru 995 . . 3 (𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
3 ifpfal 996 . . 3 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
42, 3jaoi 721 . 2 ((𝜑 ∨ ¬ 𝜑) → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
51, 4syl 14 1 (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator