ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impbidd GIF version

Theorem impbidd 125
Description: Deduce an equivalence from two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
impbidd.1 (𝜑 → (𝜓 → (𝜒𝜃)))
impbidd.2 (𝜑 → (𝜓 → (𝜃𝜒)))
Assertion
Ref Expression
impbidd (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem impbidd
StepHypRef Expression
1 impbidd.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 impbidd.2 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
3 bi3 117 . 2 ((𝜒𝜃) → ((𝜃𝜒) → (𝜒𝜃)))
41, 2, 3syl6c 65 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  impbid21d  126  pm5.74  177  con1biimdc  805  pclem6  1310
  Copyright terms: Public domain W3C validator