ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6c GIF version

Theorem syl6c 66
Description: Inference combining syl6 33 with contraction. (Contributed by Alan Sare, 2-May-2011.)
Hypotheses
Ref Expression
syl6c.1 (𝜑 → (𝜓𝜒))
syl6c.2 (𝜑 → (𝜓𝜃))
syl6c.3 (𝜒 → (𝜃𝜏))
Assertion
Ref Expression
syl6c (𝜑 → (𝜓𝜏))

Proof of Theorem syl6c
StepHypRef Expression
1 syl6c.2 . 2 (𝜑 → (𝜓𝜃))
2 syl6c.1 . . 3 (𝜑 → (𝜓𝜒))
3 syl6c.3 . . 3 (𝜒 → (𝜃𝜏))
42, 3syl6 33 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
51, 4mpdd 41 1 (𝜑 → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syldd  67  impbidd  126  jcad  305  dcbi  926  pm3.13dc  949  syl6ci  1433
  Copyright terms: Public domain W3C validator