| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pclem6 | GIF version | ||
| Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof rewritten by Jim Kingdon, 4-May-2018.) | 
| Ref | Expression | 
|---|---|
| pclem6 | ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → ¬ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimp 118 | . . . . 5 ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (𝜑 → (𝜓 ∧ ¬ 𝜑))) | |
| 2 | pm3.4 333 | . . . . . 6 ⊢ ((𝜓 ∧ ¬ 𝜑) → (𝜓 → ¬ 𝜑)) | |
| 3 | 2 | com12 30 | . . . . 5 ⊢ (𝜓 → ((𝜓 ∧ ¬ 𝜑) → ¬ 𝜑)) | 
| 4 | 1, 3 | syl9r 73 | . . . 4 ⊢ (𝜓 → ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (𝜑 → ¬ 𝜑))) | 
| 5 | ax-ia3 108 | . . . . 5 ⊢ (𝜓 → (¬ 𝜑 → (𝜓 ∧ ¬ 𝜑))) | |
| 6 | biimpr 130 | . . . . 5 ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → ((𝜓 ∧ ¬ 𝜑) → 𝜑)) | |
| 7 | 5, 6 | syl9 72 | . . . 4 ⊢ (𝜓 → ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (¬ 𝜑 → 𝜑))) | 
| 8 | 4, 7 | impbidd 127 | . . 3 ⊢ (𝜓 → ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (𝜑 ↔ ¬ 𝜑))) | 
| 9 | pm5.19 707 | . . . 4 ⊢ ¬ (𝜑 ↔ ¬ 𝜑) | |
| 10 | 9 | pm2.21i 647 | . . 3 ⊢ ((𝜑 ↔ ¬ 𝜑) → ⊥) | 
| 11 | 8, 10 | syl6com 35 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (𝜓 → ⊥)) | 
| 12 | dfnot 1382 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → ¬ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ⊥wfal 1369 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: nalset 4163 pwnss 4192 bj-nalset 15541 | 
| Copyright terms: Public domain | W3C validator |