ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1biimdc GIF version

Theorem con1biimdc 868
Description: Contraposition. (Contributed by Jim Kingdon, 4-Apr-2018.)
Assertion
Ref Expression
con1biimdc (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))

Proof of Theorem con1biimdc
StepHypRef Expression
1 biimp 117 . . 3 ((¬ 𝜑𝜓) → (¬ 𝜑𝜓))
2 con1dc 851 . . 3 (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
31, 2syl5 32 . 2 (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
4 biimpr 129 . . . 4 ((¬ 𝜑𝜓) → (𝜓 → ¬ 𝜑))
54con2d 619 . . 3 ((¬ 𝜑𝜓) → (𝜑 → ¬ 𝜓))
65a1i 9 . 2 (DECID 𝜑 → ((¬ 𝜑𝜓) → (𝜑 → ¬ 𝜓)))
73, 6impbidd 126 1 (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  con1bidc  869  con1biddc  871
  Copyright terms: Public domain W3C validator