Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con1biimdc | GIF version |
Description: Contraposition. (Contributed by Jim Kingdon, 4-Apr-2018.) |
Ref | Expression |
---|---|
con1biimdc | ⊢ (DECID 𝜑 → ((¬ 𝜑 ↔ 𝜓) → (¬ 𝜓 ↔ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 117 | . . 3 ⊢ ((¬ 𝜑 ↔ 𝜓) → (¬ 𝜑 → 𝜓)) | |
2 | con1dc 846 | . . 3 ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | |
3 | 1, 2 | syl5 32 | . 2 ⊢ (DECID 𝜑 → ((¬ 𝜑 ↔ 𝜓) → (¬ 𝜓 → 𝜑))) |
4 | biimpr 129 | . . . 4 ⊢ ((¬ 𝜑 ↔ 𝜓) → (𝜓 → ¬ 𝜑)) | |
5 | 4 | con2d 614 | . . 3 ⊢ ((¬ 𝜑 ↔ 𝜓) → (𝜑 → ¬ 𝜓)) |
6 | 5 | a1i 9 | . 2 ⊢ (DECID 𝜑 → ((¬ 𝜑 ↔ 𝜓) → (𝜑 → ¬ 𝜓))) |
7 | 3, 6 | impbidd 126 | 1 ⊢ (DECID 𝜑 → ((¬ 𝜑 ↔ 𝜓) → (¬ 𝜓 ↔ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: con1bidc 864 con1biddc 866 |
Copyright terms: Public domain | W3C validator |