| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm5.74 | GIF version | ||
| Description: Distribution of implication over biconditional. Theorem *5.74 of [WhiteheadRussell] p. 126. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 11-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.74 | ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimp 118 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
| 2 | 1 | imim3i 61 | . . 3 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | 
| 3 | biimpr 130 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
| 4 | 3 | imim3i 61 | . . 3 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) → ((𝜑 → 𝜒) → (𝜑 → 𝜓))) | 
| 5 | 2, 4 | impbid 129 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | 
| 6 | biimp 118 | . . . 4 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 7 | 6 | pm2.86d 100 | . . 3 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | 
| 8 | biimpr 130 | . . . 4 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → ((𝜑 → 𝜒) → (𝜑 → 𝜓))) | |
| 9 | 8 | pm2.86d 100 | . . 3 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → (𝜑 → (𝜒 → 𝜓))) | 
| 10 | 7, 9 | impbidd 127 | . 2 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ↔ 𝜒))) | 
| 11 | 5, 10 | impbii 126 | 1 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm5.74i 180 pm5.74ri 181 pm5.74d 182 pm5.74rd 183 bibi2d 232 | 
| Copyright terms: Public domain | W3C validator |