Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3jao | GIF version |
Description: Disjunction of 3 antecedents. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3jao | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 974 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜃)) | |
2 | jao 750 | . . . 4 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) | |
3 | jao 750 | . . . 4 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜃 → 𝜓) → (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓))) | |
4 | 2, 3 | syl6 33 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜃 → 𝜓) → (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓)))) |
5 | 4 | 3imp 1188 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓)) |
6 | 1, 5 | syl5bi 151 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 ∨ w3o 972 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 |
This theorem is referenced by: 3jaob 1297 3jaoi 1298 3jaod 1299 |
Copyright terms: Public domain | W3C validator |