Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm1.2 | GIF version |
Description: Axiom *1.2 (Taut) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 10-Mar-2013.) |
Ref | Expression |
---|---|
pm1.2 | ⊢ ((𝜑 ∨ 𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1, 1 | jaoi 711 | 1 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: oridm 752 sbequi 1832 swoer 6539 |
Copyright terms: Public domain | W3C validator |