| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . . 5
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴) | 
| 2 |   | vex 2766 | 
. . . . . 6
⊢ 𝑦 ∈ V | 
| 3 | 2 | elsuc 4441 | 
. . . . 5
⊢ (𝑦 ∈ suc 𝐴 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) | 
| 4 | 1, 3 | sylib 122 | 
. . . 4
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) | 
| 5 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ 𝑦) | 
| 6 |   | eleq2 2260 | 
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | 
| 7 | 5, 6 | syl5ibcom 155 | 
. . . . . 6
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴 → 𝑧 ∈ 𝐴)) | 
| 8 |   | elelsuc 4444 | 
. . . . . 6
⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) | 
| 9 | 7, 8 | syl6 33 | 
. . . . 5
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴)) | 
| 10 |   | trel 4138 | 
. . . . . . . . 9
⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | 
| 11 | 10 | expd 258 | 
. . . . . . . 8
⊢ (Tr 𝐴 → (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) | 
| 12 | 11 | adantrd 279 | 
. . . . . . 7
⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) | 
| 13 | 12, 8 | syl8 71 | 
. . . . . 6
⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴))) | 
| 14 |   | jao 756 | 
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) → ((𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴))) | 
| 15 | 13, 14 | syl6 33 | 
. . . . 5
⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → ((𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) → ((𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))) | 
| 16 | 9, 15 | mpdi 43 | 
. . . 4
⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → ((𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴))) | 
| 17 | 4, 16 | mpdi 43 | 
. . 3
⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) | 
| 18 | 17 | alrimivv 1889 | 
. 2
⊢ (Tr 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) | 
| 19 |   | dftr2 4133 | 
. 2
⊢ (Tr suc
𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) | 
| 20 | 18, 19 | sylibr 134 | 
1
⊢ (Tr 𝐴 → Tr suc 𝐴) |