ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suctr GIF version

Theorem suctr 4452
Description: The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.)
Assertion
Ref Expression
suctr (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
2 vex 2763 . . . . . 6 𝑦 ∈ V
32elsuc 4437 . . . . 5 (𝑦 ∈ suc 𝐴 ↔ (𝑦𝐴𝑦 = 𝐴))
41, 3sylib 122 . . . 4 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑦 = 𝐴))
5 simpl 109 . . . . . . 7 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
6 eleq2 2257 . . . . . . 7 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
75, 6syl5ibcom 155 . . . . . 6 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧𝐴))
8 elelsuc 4440 . . . . . 6 (𝑧𝐴𝑧 ∈ suc 𝐴)
97, 8syl6 33 . . . . 5 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧 ∈ suc 𝐴))
10 trel 4134 . . . . . . . . 9 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
1110expd 258 . . . . . . . 8 (Tr 𝐴 → (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))
1211adantrd 279 . . . . . . 7 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑧𝐴)))
1312, 8syl8 71 . . . . . 6 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑧 ∈ suc 𝐴)))
14 jao 756 . . . . . 6 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
1513, 14syl6 33 . . . . 5 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴))))
169, 15mpdi 43 . . . 4 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
174, 16mpdi 43 . . 3 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
1817alrimivv 1886 . 2 (Tr 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
19 dftr2 4129 . 2 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2018, 19sylibr 134 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wal 1362   = wceq 1364  wcel 2164  Tr wtr 4127  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-uni 3836  df-tr 4128  df-suc 4402
This theorem is referenced by:  ordsucim  4532  ordom  4639
  Copyright terms: Public domain W3C validator