Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  suctr GIF version

Theorem suctr 4311
 Description: The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.)
Assertion
Ref Expression
suctr (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
2 vex 2661 . . . . . 6 𝑦 ∈ V
32elsuc 4296 . . . . 5 (𝑦 ∈ suc 𝐴 ↔ (𝑦𝐴𝑦 = 𝐴))
41, 3sylib 121 . . . 4 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑦 = 𝐴))
5 simpl 108 . . . . . . 7 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
6 eleq2 2179 . . . . . . 7 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
75, 6syl5ibcom 154 . . . . . 6 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧𝐴))
8 elelsuc 4299 . . . . . 6 (𝑧𝐴𝑧 ∈ suc 𝐴)
97, 8syl6 33 . . . . 5 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧 ∈ suc 𝐴))
10 trel 4001 . . . . . . . . 9 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
1110expd 256 . . . . . . . 8 (Tr 𝐴 → (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))
1211adantrd 275 . . . . . . 7 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑧𝐴)))
1312, 8syl8 71 . . . . . 6 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑧 ∈ suc 𝐴)))
14 jao 727 . . . . . 6 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
1513, 14syl6 33 . . . . 5 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴))))
169, 15mpdi 43 . . . 4 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
174, 16mpdi 43 . . 3 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
1817alrimivv 1829 . 2 (Tr 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
19 dftr2 3996 . 2 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2018, 19sylibr 133 1 (Tr 𝐴 → Tr suc 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ wo 680  ∀wal 1312   = wceq 1314   ∈ wcel 1463  Tr wtr 3994  suc csuc 4255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-sn 3501  df-uni 3705  df-tr 3995  df-suc 4261 This theorem is referenced by:  ordsucim  4384  ordom  4488
 Copyright terms: Public domain W3C validator