| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1229 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: mp3an13 1362 mp3an23 1363 mp3anl3 1367 opelxp 4749 funimaexg 5405 ov 6124 ovmpoa 6135 ovmpo 6140 ovtposg 6405 oaword1 6617 th3q 6787 enrefg 6915 f1imaen 6946 mapxpen 7009 pw1fin 7072 xpfi 7094 djucomen 7398 addnnnq0 7636 mulnnnq0 7637 prarloclemcalc 7689 genpelxp 7698 genpprecll 7701 genppreclu 7702 addsrpr 7932 mulsrpr 7933 gt0srpr 7935 mulrid 8143 ltneg 8609 leneg 8612 suble0 8623 div1 8850 nnaddcl 9130 nnmulcl 9131 nnge1 9133 nnsub 9149 2halves 9340 halfaddsub 9345 addltmul 9348 zleltp1 9502 nnaddm1cl 9508 zextlt 9539 peano5uzti 9555 eluzp1p1 9748 uzaddcl 9781 znq 9819 xrre 10016 xrre2 10017 fzshftral 10304 nninfinf 10665 expn1ap0 10771 expadd 10803 expmul 10806 expubnd 10818 sqmul 10823 bernneq 10882 sqrecapd 10899 faclbnd2 10964 faclbnd6 10966 fihashssdif 11040 ccatlcan 11250 ccatrcan 11251 shftval3 11338 caucvgre 11492 leabs 11585 ltabs 11598 caubnd2 11628 efexp 12193 efival 12243 cos01gt0 12274 odd2np1 12384 halfleoddlt 12405 omoe 12407 opeo 12408 gcdmultiple 12541 sqgcd 12550 nn0seqcvgd 12563 phiprmpw 12744 eulerthlemth 12754 odzcllem 12765 pcelnn 12844 4sqlem3 12913 lsp0 14387 lss0v 14394 zndvds0 14614 ntrin 14798 txuni2 14930 txopn 14939 xblpnfps 15072 xblpnf 15073 bl2in 15077 unirnblps 15096 unirnbl 15097 blpnfctr 15113 plyconst 15419 plyid 15420 sincosq1eq 15513 rpcxpp1 15580 rplogb1 15622 |
| Copyright terms: Public domain | W3C validator |