| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1207 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mp3an13 1339 mp3an23 1340 mp3anl3 1344 opelxp 4694 funimaexg 5343 ov 6046 ovmpoa 6057 ovmpo 6062 ovtposg 6326 oaword1 6538 th3q 6708 enrefg 6832 f1imaen 6862 mapxpen 6918 pw1fin 6980 xpfi 7002 djucomen 7301 addnnnq0 7535 mulnnnq0 7536 prarloclemcalc 7588 genpelxp 7597 genpprecll 7600 genppreclu 7601 addsrpr 7831 mulsrpr 7832 gt0srpr 7834 mulrid 8042 ltneg 8508 leneg 8511 suble0 8522 div1 8749 nnaddcl 9029 nnmulcl 9030 nnge1 9032 nnsub 9048 2halves 9239 halfaddsub 9244 addltmul 9247 zleltp1 9400 nnaddm1cl 9406 zextlt 9437 peano5uzti 9453 eluzp1p1 9646 uzaddcl 9679 znq 9717 xrre 9914 xrre2 9915 fzshftral 10202 nninfinf 10554 expn1ap0 10660 expadd 10692 expmul 10695 expubnd 10707 sqmul 10712 bernneq 10771 sqrecapd 10788 faclbnd2 10853 faclbnd6 10855 fihashssdif 10929 shftval3 11011 caucvgre 11165 leabs 11258 ltabs 11271 caubnd2 11301 efexp 11866 efival 11916 cos01gt0 11947 odd2np1 12057 halfleoddlt 12078 omoe 12080 opeo 12081 gcdmultiple 12214 sqgcd 12223 nn0seqcvgd 12236 phiprmpw 12417 eulerthlemth 12427 odzcllem 12438 pcelnn 12517 4sqlem3 12586 lsp0 14057 lss0v 14064 zndvds0 14284 ntrin 14468 txuni2 14600 txopn 14609 xblpnfps 14742 xblpnf 14743 bl2in 14747 unirnblps 14766 unirnbl 14767 blpnfctr 14783 plyconst 15089 plyid 15090 sincosq1eq 15183 rpcxpp1 15250 rplogb1 15292 |
| Copyright terms: Public domain | W3C validator |