| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1208 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mp3an13 1341 mp3an23 1342 mp3anl3 1346 opelxp 4723 funimaexg 5377 ov 6088 ovmpoa 6099 ovmpo 6104 ovtposg 6368 oaword1 6580 th3q 6750 enrefg 6878 f1imaen 6909 mapxpen 6970 pw1fin 7033 xpfi 7055 djucomen 7359 addnnnq0 7597 mulnnnq0 7598 prarloclemcalc 7650 genpelxp 7659 genpprecll 7662 genppreclu 7663 addsrpr 7893 mulsrpr 7894 gt0srpr 7896 mulrid 8104 ltneg 8570 leneg 8573 suble0 8584 div1 8811 nnaddcl 9091 nnmulcl 9092 nnge1 9094 nnsub 9110 2halves 9301 halfaddsub 9306 addltmul 9309 zleltp1 9463 nnaddm1cl 9469 zextlt 9500 peano5uzti 9516 eluzp1p1 9709 uzaddcl 9742 znq 9780 xrre 9977 xrre2 9978 fzshftral 10265 nninfinf 10625 expn1ap0 10731 expadd 10763 expmul 10766 expubnd 10778 sqmul 10783 bernneq 10842 sqrecapd 10859 faclbnd2 10924 faclbnd6 10926 fihashssdif 11000 ccatlcan 11209 ccatrcan 11210 shftval3 11253 caucvgre 11407 leabs 11500 ltabs 11513 caubnd2 11543 efexp 12108 efival 12158 cos01gt0 12189 odd2np1 12299 halfleoddlt 12320 omoe 12322 opeo 12323 gcdmultiple 12456 sqgcd 12465 nn0seqcvgd 12478 phiprmpw 12659 eulerthlemth 12669 odzcllem 12680 pcelnn 12759 4sqlem3 12828 lsp0 14300 lss0v 14307 zndvds0 14527 ntrin 14711 txuni2 14843 txopn 14852 xblpnfps 14985 xblpnf 14986 bl2in 14990 unirnblps 15009 unirnbl 15010 blpnfctr 15026 plyconst 15332 plyid 15333 sincosq1eq 15426 rpcxpp1 15493 rplogb1 15535 |
| Copyright terms: Public domain | W3C validator |