Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1200 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: mp3an13 1323 mp3an23 1324 mp3anl3 1328 opelxp 4641 funimaexg 5282 ov 5972 ovmpoa 5983 ovmpo 5988 ovtposg 6238 oaword1 6450 th3q 6618 enrefg 6742 f1imaen 6772 mapxpen 6826 pw1fin 6888 xpfi 6907 djucomen 7193 addnnnq0 7411 mulnnnq0 7412 prarloclemcalc 7464 genpelxp 7473 genpprecll 7476 genppreclu 7477 addsrpr 7707 mulsrpr 7708 gt0srpr 7710 mulid1 7917 ltneg 8381 leneg 8384 suble0 8395 div1 8620 nnaddcl 8898 nnmulcl 8899 nnge1 8901 nnsub 8917 2halves 9107 halfaddsub 9112 addltmul 9114 zleltp1 9267 nnaddm1cl 9273 zextlt 9304 peano5uzti 9320 eluzp1p1 9512 uzaddcl 9545 znq 9583 xrre 9777 xrre2 9778 fzshftral 10064 expn1ap0 10486 expadd 10518 expmul 10521 expubnd 10533 sqmul 10538 bernneq 10596 sqrecapd 10613 faclbnd2 10676 faclbnd6 10678 fihashssdif 10753 shftval3 10791 caucvgre 10945 leabs 11038 ltabs 11051 caubnd2 11081 efexp 11645 efival 11695 cos01gt0 11725 odd2np1 11832 halfleoddlt 11853 omoe 11855 opeo 11856 gcdmultiple 11975 sqgcd 11984 nn0seqcvgd 11995 phiprmpw 12176 eulerthlemth 12186 odzcllem 12196 pcelnn 12274 4sqlem3 12342 ntrin 12918 txuni2 13050 txopn 13059 xblpnfps 13192 xblpnf 13193 bl2in 13197 unirnblps 13216 unirnbl 13217 blpnfctr 13233 sincosq1eq 13554 rpcxpp1 13621 rplogb1 13660 |
Copyright terms: Public domain | W3C validator |