| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1208 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mp3an13 1341 mp3an23 1342 mp3anl3 1346 opelxp 4706 funimaexg 5359 ov 6067 ovmpoa 6078 ovmpo 6083 ovtposg 6347 oaword1 6559 th3q 6729 enrefg 6857 f1imaen 6888 mapxpen 6947 pw1fin 7009 xpfi 7031 djucomen 7330 addnnnq0 7564 mulnnnq0 7565 prarloclemcalc 7617 genpelxp 7626 genpprecll 7629 genppreclu 7630 addsrpr 7860 mulsrpr 7861 gt0srpr 7863 mulrid 8071 ltneg 8537 leneg 8540 suble0 8551 div1 8778 nnaddcl 9058 nnmulcl 9059 nnge1 9061 nnsub 9077 2halves 9268 halfaddsub 9273 addltmul 9276 zleltp1 9430 nnaddm1cl 9436 zextlt 9467 peano5uzti 9483 eluzp1p1 9676 uzaddcl 9709 znq 9747 xrre 9944 xrre2 9945 fzshftral 10232 nninfinf 10590 expn1ap0 10696 expadd 10728 expmul 10731 expubnd 10743 sqmul 10748 bernneq 10807 sqrecapd 10824 faclbnd2 10889 faclbnd6 10891 fihashssdif 10965 shftval3 11171 caucvgre 11325 leabs 11418 ltabs 11431 caubnd2 11461 efexp 12026 efival 12076 cos01gt0 12107 odd2np1 12217 halfleoddlt 12238 omoe 12240 opeo 12241 gcdmultiple 12374 sqgcd 12383 nn0seqcvgd 12396 phiprmpw 12577 eulerthlemth 12587 odzcllem 12598 pcelnn 12677 4sqlem3 12746 lsp0 14218 lss0v 14225 zndvds0 14445 ntrin 14629 txuni2 14761 txopn 14770 xblpnfps 14903 xblpnf 14904 bl2in 14908 unirnblps 14927 unirnbl 14928 blpnfctr 14944 plyconst 15250 plyid 15251 sincosq1eq 15344 rpcxpp1 15411 rplogb1 15453 |
| Copyright terms: Public domain | W3C validator |