| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an3.1 | ⊢ 𝜒 |
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1207 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mp3an13 1339 mp3an23 1340 mp3anl3 1344 opelxp 4694 funimaexg 5343 ov 6046 ovmpoa 6057 ovmpo 6062 ovtposg 6326 oaword1 6538 th3q 6708 enrefg 6832 f1imaen 6862 mapxpen 6918 pw1fin 6980 xpfi 7002 djucomen 7299 addnnnq0 7533 mulnnnq0 7534 prarloclemcalc 7586 genpelxp 7595 genpprecll 7598 genppreclu 7599 addsrpr 7829 mulsrpr 7830 gt0srpr 7832 mulrid 8040 ltneg 8506 leneg 8509 suble0 8520 div1 8747 nnaddcl 9027 nnmulcl 9028 nnge1 9030 nnsub 9046 2halves 9237 halfaddsub 9242 addltmul 9245 zleltp1 9398 nnaddm1cl 9404 zextlt 9435 peano5uzti 9451 eluzp1p1 9644 uzaddcl 9677 znq 9715 xrre 9912 xrre2 9913 fzshftral 10200 nninfinf 10552 expn1ap0 10658 expadd 10690 expmul 10693 expubnd 10705 sqmul 10710 bernneq 10769 sqrecapd 10786 faclbnd2 10851 faclbnd6 10853 fihashssdif 10927 shftval3 11009 caucvgre 11163 leabs 11256 ltabs 11269 caubnd2 11299 efexp 11864 efival 11914 cos01gt0 11945 odd2np1 12055 halfleoddlt 12076 omoe 12078 opeo 12079 gcdmultiple 12212 sqgcd 12221 nn0seqcvgd 12234 phiprmpw 12415 eulerthlemth 12425 odzcllem 12436 pcelnn 12515 4sqlem3 12584 lsp0 14055 lss0v 14062 zndvds0 14282 ntrin 14444 txuni2 14576 txopn 14585 xblpnfps 14718 xblpnf 14719 bl2in 14723 unirnblps 14742 unirnbl 14743 blpnfctr 14759 plyconst 15065 plyid 15066 sincosq1eq 15159 rpcxpp1 15226 rplogb1 15268 |
| Copyright terms: Public domain | W3C validator |