Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1195 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mp3an13 1318 mp3an23 1319 mp3anl3 1323 opelxp 4634 funimaexg 5272 ov 5961 ovmpoa 5972 ovmpo 5977 ovtposg 6227 oaword1 6439 th3q 6606 enrefg 6730 f1imaen 6760 mapxpen 6814 pw1fin 6876 xpfi 6895 djucomen 7172 addnnnq0 7390 mulnnnq0 7391 prarloclemcalc 7443 genpelxp 7452 genpprecll 7455 genppreclu 7456 addsrpr 7686 mulsrpr 7687 gt0srpr 7689 mulid1 7896 ltneg 8360 leneg 8363 suble0 8374 div1 8599 nnaddcl 8877 nnmulcl 8878 nnge1 8880 nnsub 8896 2halves 9086 halfaddsub 9091 addltmul 9093 zleltp1 9246 nnaddm1cl 9252 zextlt 9283 peano5uzti 9299 eluzp1p1 9491 uzaddcl 9524 znq 9562 xrre 9756 xrre2 9757 fzshftral 10043 expn1ap0 10465 expadd 10497 expmul 10500 expubnd 10512 sqmul 10517 bernneq 10575 sqrecapd 10592 faclbnd2 10655 faclbnd6 10657 fihashssdif 10731 shftval3 10769 caucvgre 10923 leabs 11016 ltabs 11029 caubnd2 11059 efexp 11623 efival 11673 cos01gt0 11703 odd2np1 11810 halfleoddlt 11831 omoe 11833 opeo 11834 gcdmultiple 11953 sqgcd 11962 nn0seqcvgd 11973 phiprmpw 12154 eulerthlemth 12164 odzcllem 12174 pcelnn 12252 4sqlem3 12320 ntrin 12764 txuni2 12896 txopn 12905 xblpnfps 13038 xblpnf 13039 bl2in 13043 unirnblps 13062 unirnbl 13063 blpnfctr 13079 sincosq1eq 13400 rpcxpp1 13467 rplogb1 13506 |
Copyright terms: Public domain | W3C validator |