| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| mp3an3.1 | ⊢ 𝜒 | 
| mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
| 2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expia 1207 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | 
| 4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: mp3an13 1339 mp3an23 1340 mp3anl3 1344 opelxp 4693 funimaexg 5342 ov 6042 ovmpoa 6053 ovmpo 6058 ovtposg 6317 oaword1 6529 th3q 6699 enrefg 6823 f1imaen 6853 mapxpen 6909 pw1fin 6971 xpfi 6993 djucomen 7283 addnnnq0 7516 mulnnnq0 7517 prarloclemcalc 7569 genpelxp 7578 genpprecll 7581 genppreclu 7582 addsrpr 7812 mulsrpr 7813 gt0srpr 7815 mulrid 8023 ltneg 8489 leneg 8492 suble0 8503 div1 8730 nnaddcl 9010 nnmulcl 9011 nnge1 9013 nnsub 9029 2halves 9220 halfaddsub 9225 addltmul 9228 zleltp1 9381 nnaddm1cl 9387 zextlt 9418 peano5uzti 9434 eluzp1p1 9627 uzaddcl 9660 znq 9698 xrre 9895 xrre2 9896 fzshftral 10183 nninfinf 10535 expn1ap0 10641 expadd 10673 expmul 10676 expubnd 10688 sqmul 10693 bernneq 10752 sqrecapd 10769 faclbnd2 10834 faclbnd6 10836 fihashssdif 10910 shftval3 10992 caucvgre 11146 leabs 11239 ltabs 11252 caubnd2 11282 efexp 11847 efival 11897 cos01gt0 11928 odd2np1 12038 halfleoddlt 12059 omoe 12061 opeo 12062 gcdmultiple 12187 sqgcd 12196 nn0seqcvgd 12209 phiprmpw 12390 eulerthlemth 12400 odzcllem 12411 pcelnn 12490 4sqlem3 12559 lsp0 13979 lss0v 13986 zndvds0 14206 ntrin 14360 txuni2 14492 txopn 14501 xblpnfps 14634 xblpnf 14635 bl2in 14639 unirnblps 14658 unirnbl 14659 blpnfctr 14675 plyconst 14981 plyid 14982 sincosq1eq 15075 rpcxpp1 15142 rplogb1 15184 | 
| Copyright terms: Public domain | W3C validator |