![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an3 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | ⊢ 𝜒 |
mp3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 ⊢ 𝜒 | |
2 | mp3an3.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expia 1207 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
4 | 1, 3 | mpi 15 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mp3an13 1339 mp3an23 1340 mp3anl3 1344 opelxp 4690 funimaexg 5339 ov 6039 ovmpoa 6050 ovmpo 6055 ovtposg 6314 oaword1 6526 th3q 6696 enrefg 6820 f1imaen 6850 mapxpen 6906 pw1fin 6968 xpfi 6988 djucomen 7278 addnnnq0 7511 mulnnnq0 7512 prarloclemcalc 7564 genpelxp 7573 genpprecll 7576 genppreclu 7577 addsrpr 7807 mulsrpr 7808 gt0srpr 7810 mulrid 8018 ltneg 8483 leneg 8486 suble0 8497 div1 8724 nnaddcl 9004 nnmulcl 9005 nnge1 9007 nnsub 9023 2halves 9214 halfaddsub 9219 addltmul 9222 zleltp1 9375 nnaddm1cl 9381 zextlt 9412 peano5uzti 9428 eluzp1p1 9621 uzaddcl 9654 znq 9692 xrre 9889 xrre2 9890 fzshftral 10177 nninfinf 10517 expn1ap0 10623 expadd 10655 expmul 10658 expubnd 10670 sqmul 10675 bernneq 10734 sqrecapd 10751 faclbnd2 10816 faclbnd6 10818 fihashssdif 10892 shftval3 10974 caucvgre 11128 leabs 11221 ltabs 11234 caubnd2 11264 efexp 11828 efival 11878 cos01gt0 11909 odd2np1 12017 halfleoddlt 12038 omoe 12040 opeo 12041 gcdmultiple 12160 sqgcd 12169 nn0seqcvgd 12182 phiprmpw 12363 eulerthlemth 12373 odzcllem 12383 pcelnn 12462 4sqlem3 12531 lsp0 13922 lss0v 13929 zndvds0 14149 ntrin 14303 txuni2 14435 txopn 14444 xblpnfps 14577 xblpnf 14578 bl2in 14582 unirnblps 14601 unirnbl 14602 blpnfctr 14618 plyconst 14924 plyid 14925 sincosq1eq 15015 rpcxpp1 15082 rplogb1 15121 |
Copyright terms: Public domain | W3C validator |