Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4i | GIF version |
Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 771 ordir 817 andir 819 3anrot 983 3orrot 984 3ancoma 985 3orcomb 987 3ioran 993 3anbi123i 1188 3orbi123i 1189 3or6 1323 xorcom 1388 nfbii 1471 19.26-3an 1481 alnex 1497 19.42h 1685 19.42 1686 equsal 1725 equsalv 1791 sb6 1884 eeeanv 1931 sbbi 1957 sbco3xzyz 1971 sbcom2v 1983 sbel2x 1996 sb8eu 2037 sb8mo 2038 sb8euh 2047 eu1 2049 cbvmo 2064 mo3h 2077 sbmo 2083 eqcom 2177 abeq1 2285 cbvabw 2298 cbvab 2299 clelab 2301 nfceqi 2313 sbabel 2344 ralbii2 2485 rexbii2 2486 r2alf 2492 r2exf 2493 nfraldya 2510 nfrexdya 2511 r3al 2519 r19.41 2630 r19.42v 2632 ralcomf 2636 rexcomf 2637 reean 2643 3reeanv 2645 rabid2 2651 rabbi 2652 reubiia 2659 rmobiia 2664 reu5 2687 rmo5 2690 cbvralfw 2692 cbvrexfw 2693 cbvralf 2694 cbvrexf 2695 cbvreu 2699 cbvrmo 2700 cbvralvw 2705 cbvrexvw 2706 vjust 2736 ceqsex3v 2777 ceqsex4v 2778 ceqsex8v 2780 eueq 2906 reu2 2923 reu6 2924 reu3 2925 rmo4 2928 rmo3f 2932 2rmorex 2941 cbvsbcw 2988 cbvsbc 2989 sbccomlem 3035 rmo3 3052 csbcow 3066 csbabg 3116 cbvralcsf 3117 cbvrexcsf 3118 cbvreucsf 3119 eqss 3168 uniiunlem 3242 ssequn1 3303 unss 3307 rexun 3313 ralunb 3314 elin3 3324 incom 3325 inass 3343 ssin 3355 ssddif 3367 unssdif 3368 difin 3370 invdif 3375 indif 3376 indi 3380 symdifxor 3399 disj3 3473 eldifpr 3616 rexsns 3628 reusn 3660 prss 3745 tpss 3754 eluni2 3809 elunirab 3818 uniun 3824 uni0b 3830 unissb 3835 elintrab 3852 ssintrab 3863 intun 3871 intpr 3872 iuncom 3888 iuncom4 3889 iunab 3928 ssiinf 3931 iinab 3943 iunin2 3945 iunun 3960 iunxun 3961 iunxiun 3963 sspwuni 3966 iinpw 3972 cbvdisj 3985 brun 4049 brin 4050 brdif 4051 dftr2 4098 inuni 4150 repizf2lem 4156 unidif0 4162 ssext 4215 pweqb 4217 otth2 4235 opelopabsbALT 4253 eqopab2b 4273 pwin 4276 unisuc 4407 elpwpwel 4469 sucexb 4490 elomssom 4598 xpiundi 4678 xpiundir 4679 poinxp 4689 soinxp 4690 seinxp 4691 inopab 4752 difopab 4753 raliunxp 4761 rexiunxp 4762 iunxpf 4768 cnvco 4805 dmiun 4829 dmuni 4830 dm0rn0 4837 brres 4906 dmres 4921 restidsing 4956 cnvsym 5004 asymref 5006 codir 5009 qfto 5010 cnvopab 5022 cnvdif 5027 rniun 5031 dminss 5035 imainss 5036 cnvcnvsn 5097 resco 5125 imaco 5126 rnco 5127 coiun 5130 coass 5139 ressn 5161 cnviinm 5162 xpcom 5167 funcnv 5269 funcnv3 5270 fncnv 5274 fun11 5275 fnres 5324 dfmpt3 5330 fnopabg 5331 fintm 5393 fin 5394 fores 5439 dff1o3 5459 fun11iun 5474 f11o 5486 f1ompt 5659 fsn 5680 imaiun 5751 isores2 5804 eqoprab2b 5923 opabex3d 6112 opabex3 6113 dfopab2 6180 dfoprab3s 6181 fmpox 6191 tpostpos 6255 dfsmo2 6278 qsid 6590 mapval2 6668 mapsncnv 6685 elixp2 6692 ixpin 6713 xpassen 6820 diffitest 6877 pw1dc0el 6901 supmoti 6982 eqinfti 7009 distrnqg 7361 ltbtwnnq 7390 distrnq0 7433 nqprrnd 7517 ltresr 7813 elznn0nn 9240 xrnemnf 9748 xrnepnf 9749 elioomnf 9939 elxrge0 9949 elfzuzb 9989 fzass4 10032 elfz2nn0 10082 elfzo2 10120 elfzo3 10133 lbfzo0 10151 fzind2 10209 dfrp2 10234 rexfiuz 10966 fisumcom2 11414 prodmodc 11554 fprodcom2fi 11602 infssuzex 11917 infpn2 12424 isbasis2g 13123 tgval2 13131 ntreq0 13212 txuni2 13336 isms2 13534 bdceq 14163 |
Copyright terms: Public domain | W3C validator |