| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4i | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 776 ordir 822 andir 824 3anrot 1007 3orrot 1008 3ancoma 1009 3orcomb 1011 3ioran 1017 3anbi123i 1212 3orbi123i 1213 3or6 1357 xorcom 1430 nfbii 1519 19.26-3an 1529 alnex 1545 19.42h 1733 19.42 1734 equsal 1773 equsalv 1839 sb6 1933 eeeanv 1984 sbbi 2010 sbco3xzyz 2024 sbcom2v 2036 sbel2x 2049 sb8eu 2090 sb8mo 2091 sb8euh 2100 eu1 2102 cbvmo 2117 mo3h 2131 sbmo 2137 eqcom 2231 abeq1 2339 cbvabw 2352 cbvab 2353 clelab 2355 nfceqi 2368 sbabel 2399 ralbii2 2540 rexbii2 2541 r2alf 2547 r2exf 2548 nfraldya 2565 nfrexdya 2566 r3al 2574 r19.41 2686 r19.42v 2688 ralcomf 2692 rexcomf 2693 reean 2700 3reeanv 2702 rabid2 2708 rabbi 2709 cbvrmow 2714 reubiia 2717 rmobiia 2722 reu5 2749 rmo5 2752 cbvralfw 2754 cbvrexfw 2755 cbvralf 2756 cbvrexf 2757 cbvreuw 2760 cbvreu 2763 cbvrmo 2764 cbvralvw 2769 cbvrexvw 2770 vjust 2800 ceqsex3v 2843 ceqsex4v 2844 ceqsex8v 2846 eueq 2974 reu2 2991 reu6 2992 reu3 2993 rmo4 2996 rmo3f 3000 2rmorex 3009 cbvsbcw 3056 cbvsbc 3057 sbccomlem 3103 rmo3 3121 csbcow 3135 csbabg 3186 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 eqss 3239 uniiunlem 3313 ssequn1 3374 unss 3378 rexun 3384 ralunb 3385 elin3 3395 incom 3396 inass 3414 ssin 3426 ssddif 3438 unssdif 3439 difin 3441 invdif 3446 indif 3447 indi 3451 symdifxor 3470 disj3 3544 eldifpr 3693 rexsns 3705 reusn 3737 prss 3823 tpss 3835 eluni2 3891 elunirab 3900 uniun 3906 uni0b 3912 unissb 3917 elintrab 3934 ssintrab 3945 intun 3953 intpr 3954 iuncom 3970 iuncom4 3971 iunab 4011 ssiinf 4014 iinab 4026 iunin2 4028 iunun 4043 iunxun 4044 iunxiun 4046 sspwuni 4049 iinpw 4055 cbvdisj 4068 brun 4134 brin 4135 brdif 4136 dftr2 4183 inuni 4238 repizf2lem 4244 unidif0 4250 ssext 4306 pweqb 4308 otth2 4326 opelopabsbALT 4346 eqopab2b 4367 pwin 4372 unisuc 4503 elpwpwel 4565 sucexb 4588 elomssom 4696 xpiundi 4776 xpiundir 4777 poinxp 4787 soinxp 4788 seinxp 4789 inopab 4853 difopab 4854 raliunxp 4862 rexiunxp 4863 iunxpf 4869 cnvco 4906 dmiun 4931 dmuni 4932 dm0rn0 4939 brres 5010 dmres 5025 restidsing 5060 cnvsym 5111 asymref 5113 codir 5116 qfto 5117 cnvopab 5129 cnvdif 5134 rniun 5138 dminss 5142 imainss 5143 cnvcnvsn 5204 resco 5232 imaco 5233 rnco 5234 coiun 5237 coass 5246 ressn 5268 cnviinm 5269 xpcom 5274 funcnv 5381 funcnv3 5382 fncnv 5386 fun11 5387 fnres 5439 dfmpt3 5445 fnopabg 5446 fintm 5510 fin 5511 fores 5557 dff1o3 5577 fun11iun 5592 f11o 5604 f1ompt 5785 fsn 5806 imaiun 5883 isores2 5936 eqoprab2b 6061 opabex3d 6264 opabex3 6265 dfopab2 6333 dfoprab3s 6334 fmpox 6344 tpostpos 6408 dfsmo2 6431 qsid 6745 mapval2 6823 mapsncnv 6840 elixp2 6847 ixpin 6868 xpassen 6985 diffitest 7045 pw1dc0el 7069 supmoti 7156 eqinfti 7183 distrnqg 7570 ltbtwnnq 7599 distrnq0 7642 nqprrnd 7726 ltresr 8022 elznn0nn 9456 xrnemnf 9969 xrnepnf 9970 elioomnf 10160 elxrge0 10170 elfzuzb 10211 fzass4 10254 elfz2nn0 10304 elfzo2 10342 elfzo3 10356 lbfzo0 10377 fzind2 10440 infssuzex 10448 dfrp2 10478 rexfiuz 11495 fisumcom2 11944 prodmodc 12084 fprodcom2fi 12132 4sqlem12 12920 infpn2 13022 xpsfrnel 13372 xpscf 13375 islmod 14249 isbasis2g 14713 tgval2 14719 ntreq0 14800 txuni2 14924 isms2 15122 plyun0 15404 bdceq 16163 |
| Copyright terms: Public domain | W3C validator |