![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4i | GIF version |
Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 772 ordir 818 andir 820 3anrot 985 3orrot 986 3ancoma 987 3orcomb 989 3ioran 995 3anbi123i 1190 3orbi123i 1191 3or6 1334 xorcom 1399 nfbii 1484 19.26-3an 1494 alnex 1510 19.42h 1698 19.42 1699 equsal 1738 equsalv 1804 sb6 1898 eeeanv 1949 sbbi 1975 sbco3xzyz 1989 sbcom2v 2001 sbel2x 2014 sb8eu 2055 sb8mo 2056 sb8euh 2065 eu1 2067 cbvmo 2082 mo3h 2095 sbmo 2101 eqcom 2195 abeq1 2303 cbvabw 2316 cbvab 2317 clelab 2319 nfceqi 2332 sbabel 2363 ralbii2 2504 rexbii2 2505 r2alf 2511 r2exf 2512 nfraldya 2529 nfrexdya 2530 r3al 2538 r19.41 2649 r19.42v 2651 ralcomf 2655 rexcomf 2656 reean 2663 3reeanv 2665 rabid2 2671 rabbi 2672 reubiia 2679 rmobiia 2684 reu5 2711 rmo5 2714 cbvralfw 2716 cbvrexfw 2717 cbvralf 2718 cbvrexf 2719 cbvreu 2724 cbvrmo 2725 cbvralvw 2730 cbvrexvw 2731 vjust 2761 ceqsex3v 2802 ceqsex4v 2803 ceqsex8v 2805 eueq 2931 reu2 2948 reu6 2949 reu3 2950 rmo4 2953 rmo3f 2957 2rmorex 2966 cbvsbcw 3013 cbvsbc 3014 sbccomlem 3060 rmo3 3077 csbcow 3091 csbabg 3142 cbvralcsf 3143 cbvrexcsf 3144 cbvreucsf 3145 eqss 3194 uniiunlem 3268 ssequn1 3329 unss 3333 rexun 3339 ralunb 3340 elin3 3350 incom 3351 inass 3369 ssin 3381 ssddif 3393 unssdif 3394 difin 3396 invdif 3401 indif 3402 indi 3406 symdifxor 3425 disj3 3499 eldifpr 3645 rexsns 3657 reusn 3689 prss 3774 tpss 3784 eluni2 3839 elunirab 3848 uniun 3854 uni0b 3860 unissb 3865 elintrab 3882 ssintrab 3893 intun 3901 intpr 3902 iuncom 3918 iuncom4 3919 iunab 3959 ssiinf 3962 iinab 3974 iunin2 3976 iunun 3991 iunxun 3992 iunxiun 3994 sspwuni 3997 iinpw 4003 cbvdisj 4016 brun 4080 brin 4081 brdif 4082 dftr2 4129 inuni 4184 repizf2lem 4190 unidif0 4196 ssext 4250 pweqb 4252 otth2 4270 opelopabsbALT 4289 eqopab2b 4310 pwin 4313 unisuc 4444 elpwpwel 4506 sucexb 4529 elomssom 4637 xpiundi 4717 xpiundir 4718 poinxp 4728 soinxp 4729 seinxp 4730 inopab 4794 difopab 4795 raliunxp 4803 rexiunxp 4804 iunxpf 4810 cnvco 4847 dmiun 4871 dmuni 4872 dm0rn0 4879 brres 4948 dmres 4963 restidsing 4998 cnvsym 5049 asymref 5051 codir 5054 qfto 5055 cnvopab 5067 cnvdif 5072 rniun 5076 dminss 5080 imainss 5081 cnvcnvsn 5142 resco 5170 imaco 5171 rnco 5172 coiun 5175 coass 5184 ressn 5206 cnviinm 5207 xpcom 5212 funcnv 5315 funcnv3 5316 fncnv 5320 fun11 5321 fnres 5370 dfmpt3 5376 fnopabg 5377 fintm 5439 fin 5440 fores 5486 dff1o3 5506 fun11iun 5521 f11o 5533 f1ompt 5709 fsn 5730 imaiun 5803 isores2 5856 eqoprab2b 5976 opabex3d 6173 opabex3 6174 dfopab2 6242 dfoprab3s 6243 fmpox 6253 tpostpos 6317 dfsmo2 6340 qsid 6654 mapval2 6732 mapsncnv 6749 elixp2 6756 ixpin 6777 xpassen 6884 diffitest 6943 pw1dc0el 6967 supmoti 7052 eqinfti 7079 distrnqg 7447 ltbtwnnq 7476 distrnq0 7519 nqprrnd 7603 ltresr 7899 elznn0nn 9331 xrnemnf 9843 xrnepnf 9844 elioomnf 10034 elxrge0 10044 elfzuzb 10085 fzass4 10128 elfz2nn0 10178 elfzo2 10216 elfzo3 10230 lbfzo0 10248 fzind2 10306 dfrp2 10332 rexfiuz 11133 fisumcom2 11581 prodmodc 11721 fprodcom2fi 11769 infssuzex 12086 4sqlem12 12540 infpn2 12613 xpsfrnel 12927 xpscf 12930 islmod 13787 isbasis2g 14213 tgval2 14219 ntreq0 14300 txuni2 14424 isms2 14622 plyun0 14882 bdceq 15334 |
Copyright terms: Public domain | W3C validator |