![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4i | GIF version |
Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 771 ordir 817 andir 819 3anrot 983 3orrot 984 3ancoma 985 3orcomb 987 3ioran 993 3anbi123i 1188 3orbi123i 1189 3or6 1323 xorcom 1388 nfbii 1473 19.26-3an 1483 alnex 1499 19.42h 1687 19.42 1688 equsal 1727 equsalv 1793 sb6 1886 eeeanv 1933 sbbi 1959 sbco3xzyz 1973 sbcom2v 1985 sbel2x 1998 sb8eu 2039 sb8mo 2040 sb8euh 2049 eu1 2051 cbvmo 2066 mo3h 2079 sbmo 2085 eqcom 2179 abeq1 2287 cbvabw 2300 cbvab 2301 clelab 2303 nfceqi 2315 sbabel 2346 ralbii2 2487 rexbii2 2488 r2alf 2494 r2exf 2495 nfraldya 2512 nfrexdya 2513 r3al 2521 r19.41 2632 r19.42v 2634 ralcomf 2638 rexcomf 2639 reean 2646 3reeanv 2648 rabid2 2654 rabbi 2655 reubiia 2662 rmobiia 2667 reu5 2690 rmo5 2693 cbvralfw 2695 cbvrexfw 2696 cbvralf 2697 cbvrexf 2698 cbvreu 2702 cbvrmo 2703 cbvralvw 2708 cbvrexvw 2709 vjust 2739 ceqsex3v 2780 ceqsex4v 2781 ceqsex8v 2783 eueq 2909 reu2 2926 reu6 2927 reu3 2928 rmo4 2931 rmo3f 2935 2rmorex 2944 cbvsbcw 2991 cbvsbc 2992 sbccomlem 3038 rmo3 3055 csbcow 3069 csbabg 3119 cbvralcsf 3120 cbvrexcsf 3121 cbvreucsf 3122 eqss 3171 uniiunlem 3245 ssequn1 3306 unss 3310 rexun 3316 ralunb 3317 elin3 3327 incom 3328 inass 3346 ssin 3358 ssddif 3370 unssdif 3371 difin 3373 invdif 3378 indif 3379 indi 3383 symdifxor 3402 disj3 3476 eldifpr 3620 rexsns 3632 reusn 3664 prss 3749 tpss 3759 eluni2 3814 elunirab 3823 uniun 3829 uni0b 3835 unissb 3840 elintrab 3857 ssintrab 3868 intun 3876 intpr 3877 iuncom 3893 iuncom4 3894 iunab 3934 ssiinf 3937 iinab 3949 iunin2 3951 iunun 3966 iunxun 3967 iunxiun 3969 sspwuni 3972 iinpw 3978 cbvdisj 3991 brun 4055 brin 4056 brdif 4057 dftr2 4104 inuni 4156 repizf2lem 4162 unidif0 4168 ssext 4222 pweqb 4224 otth2 4242 opelopabsbALT 4260 eqopab2b 4280 pwin 4283 unisuc 4414 elpwpwel 4476 sucexb 4497 elomssom 4605 xpiundi 4685 xpiundir 4686 poinxp 4696 soinxp 4697 seinxp 4698 inopab 4760 difopab 4761 raliunxp 4769 rexiunxp 4770 iunxpf 4776 cnvco 4813 dmiun 4837 dmuni 4838 dm0rn0 4845 brres 4914 dmres 4929 restidsing 4964 cnvsym 5013 asymref 5015 codir 5018 qfto 5019 cnvopab 5031 cnvdif 5036 rniun 5040 dminss 5044 imainss 5045 cnvcnvsn 5106 resco 5134 imaco 5135 rnco 5136 coiun 5139 coass 5148 ressn 5170 cnviinm 5171 xpcom 5176 funcnv 5278 funcnv3 5279 fncnv 5283 fun11 5284 fnres 5333 dfmpt3 5339 fnopabg 5340 fintm 5402 fin 5403 fores 5448 dff1o3 5468 fun11iun 5483 f11o 5495 f1ompt 5668 fsn 5689 imaiun 5761 isores2 5814 eqoprab2b 5933 opabex3d 6122 opabex3 6123 dfopab2 6190 dfoprab3s 6191 fmpox 6201 tpostpos 6265 dfsmo2 6288 qsid 6600 mapval2 6678 mapsncnv 6695 elixp2 6702 ixpin 6723 xpassen 6830 diffitest 6887 pw1dc0el 6911 supmoti 6992 eqinfti 7019 distrnqg 7386 ltbtwnnq 7415 distrnq0 7458 nqprrnd 7542 ltresr 7838 elznn0nn 9267 xrnemnf 9777 xrnepnf 9778 elioomnf 9968 elxrge0 9978 elfzuzb 10019 fzass4 10062 elfz2nn0 10112 elfzo2 10150 elfzo3 10163 lbfzo0 10181 fzind2 10239 dfrp2 10264 rexfiuz 10998 fisumcom2 11446 prodmodc 11586 fprodcom2fi 11634 infssuzex 11950 infpn2 12457 xpsfrnel 12763 xpscf 12766 islmod 13381 isbasis2g 13548 tgval2 13554 ntreq0 13635 txuni2 13759 isms2 13957 bdceq 14597 |
Copyright terms: Public domain | W3C validator |