| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4i | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 773 ordir 819 andir 821 3anrot 986 3orrot 987 3ancoma 988 3orcomb 990 3ioran 996 3anbi123i 1191 3orbi123i 1192 3or6 1336 xorcom 1408 nfbii 1497 19.26-3an 1507 alnex 1523 19.42h 1711 19.42 1712 equsal 1751 equsalv 1817 sb6 1911 eeeanv 1962 sbbi 1988 sbco3xzyz 2002 sbcom2v 2014 sbel2x 2027 sb8eu 2068 sb8mo 2069 sb8euh 2078 eu1 2080 cbvmo 2095 mo3h 2108 sbmo 2114 eqcom 2208 abeq1 2316 cbvabw 2329 cbvab 2330 clelab 2332 nfceqi 2345 sbabel 2376 ralbii2 2517 rexbii2 2518 r2alf 2524 r2exf 2525 nfraldya 2542 nfrexdya 2543 r3al 2551 r19.41 2662 r19.42v 2664 ralcomf 2668 rexcomf 2669 reean 2676 3reeanv 2678 rabid2 2684 rabbi 2685 reubiia 2692 rmobiia 2697 reu5 2724 rmo5 2727 cbvralfw 2729 cbvrexfw 2730 cbvralf 2731 cbvrexf 2732 cbvreu 2737 cbvrmo 2738 cbvralvw 2743 cbvrexvw 2744 vjust 2774 ceqsex3v 2817 ceqsex4v 2818 ceqsex8v 2820 eueq 2948 reu2 2965 reu6 2966 reu3 2967 rmo4 2970 rmo3f 2974 2rmorex 2983 cbvsbcw 3030 cbvsbc 3031 sbccomlem 3077 rmo3 3094 csbcow 3108 csbabg 3159 cbvralcsf 3160 cbvrexcsf 3161 cbvreucsf 3162 eqss 3212 uniiunlem 3286 ssequn1 3347 unss 3351 rexun 3357 ralunb 3358 elin3 3368 incom 3369 inass 3387 ssin 3399 ssddif 3411 unssdif 3412 difin 3414 invdif 3419 indif 3420 indi 3424 symdifxor 3443 disj3 3517 eldifpr 3665 rexsns 3677 reusn 3709 prss 3795 tpss 3805 eluni2 3860 elunirab 3869 uniun 3875 uni0b 3881 unissb 3886 elintrab 3903 ssintrab 3914 intun 3922 intpr 3923 iuncom 3939 iuncom4 3940 iunab 3980 ssiinf 3983 iinab 3995 iunin2 3997 iunun 4012 iunxun 4013 iunxiun 4015 sspwuni 4018 iinpw 4024 cbvdisj 4037 brun 4103 brin 4104 brdif 4105 dftr2 4152 inuni 4207 repizf2lem 4213 unidif0 4219 ssext 4273 pweqb 4275 otth2 4293 opelopabsbALT 4313 eqopab2b 4334 pwin 4337 unisuc 4468 elpwpwel 4530 sucexb 4553 elomssom 4661 xpiundi 4741 xpiundir 4742 poinxp 4752 soinxp 4753 seinxp 4754 inopab 4818 difopab 4819 raliunxp 4827 rexiunxp 4828 iunxpf 4834 cnvco 4871 dmiun 4896 dmuni 4897 dm0rn0 4904 brres 4974 dmres 4989 restidsing 5024 cnvsym 5075 asymref 5077 codir 5080 qfto 5081 cnvopab 5093 cnvdif 5098 rniun 5102 dminss 5106 imainss 5107 cnvcnvsn 5168 resco 5196 imaco 5197 rnco 5198 coiun 5201 coass 5210 ressn 5232 cnviinm 5233 xpcom 5238 funcnv 5344 funcnv3 5345 fncnv 5349 fun11 5350 fnres 5402 dfmpt3 5408 fnopabg 5409 fintm 5473 fin 5474 fores 5520 dff1o3 5540 fun11iun 5555 f11o 5567 f1ompt 5744 fsn 5765 imaiun 5842 isores2 5895 eqoprab2b 6016 opabex3d 6219 opabex3 6220 dfopab2 6288 dfoprab3s 6289 fmpox 6299 tpostpos 6363 dfsmo2 6386 qsid 6700 mapval2 6778 mapsncnv 6795 elixp2 6802 ixpin 6823 xpassen 6940 diffitest 6999 pw1dc0el 7023 supmoti 7110 eqinfti 7137 distrnqg 7520 ltbtwnnq 7549 distrnq0 7592 nqprrnd 7676 ltresr 7972 elznn0nn 9406 xrnemnf 9919 xrnepnf 9920 elioomnf 10110 elxrge0 10120 elfzuzb 10161 fzass4 10204 elfz2nn0 10254 elfzo2 10292 elfzo3 10306 lbfzo0 10327 fzind2 10390 infssuzex 10398 dfrp2 10428 rexfiuz 11375 fisumcom2 11824 prodmodc 11964 fprodcom2fi 12012 4sqlem12 12800 infpn2 12902 xpsfrnel 13251 xpscf 13254 islmod 14128 isbasis2g 14592 tgval2 14598 ntreq0 14679 txuni2 14803 isms2 15001 plyun0 15283 bdceq 15916 |
| Copyright terms: Public domain | W3C validator |