Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4i | GIF version |
Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 186 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitri 183 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi2d 231 pm4.71 387 pm5.32ri 451 mpan10 466 an31 554 an4 576 or4 761 ordir 807 andir 809 3anrot 973 3orrot 974 3ancoma 975 3orcomb 977 3ioran 983 3anbi123i 1178 3orbi123i 1179 3or6 1313 xorcom 1378 nfbii 1461 19.26-3an 1471 alnex 1487 19.42h 1675 19.42 1676 equsal 1715 equsalv 1781 sb6 1874 eeeanv 1921 sbbi 1947 sbco3xzyz 1961 sbcom2v 1973 sbel2x 1986 sb8eu 2027 sb8mo 2028 sb8euh 2037 eu1 2039 cbvmo 2054 mo3h 2067 sbmo 2073 eqcom 2167 abeq1 2276 cbvabw 2289 cbvab 2290 clelab 2292 nfceqi 2304 sbabel 2335 ralbii2 2476 rexbii2 2477 r2alf 2483 r2exf 2484 nfraldya 2501 nfrexdya 2502 r3al 2510 r19.41 2621 r19.42v 2623 ralcomf 2627 rexcomf 2628 reean 2634 3reeanv 2636 rabid2 2642 rabbi 2643 reubiia 2650 rmobiia 2655 reu5 2678 rmo5 2681 cbvralfw 2683 cbvrexfw 2684 cbvralf 2685 cbvrexf 2686 cbvreu 2690 cbvrmo 2691 cbvralvw 2696 cbvrexvw 2697 vjust 2727 ceqsex3v 2768 ceqsex4v 2769 ceqsex8v 2771 eueq 2897 reu2 2914 reu6 2915 reu3 2916 rmo4 2919 rmo3f 2923 2rmorex 2932 cbvsbcw 2978 cbvsbc 2979 sbccomlem 3025 rmo3 3042 csbcow 3056 csbabg 3106 cbvralcsf 3107 cbvrexcsf 3108 cbvreucsf 3109 eqss 3157 uniiunlem 3231 ssequn1 3292 unss 3296 rexun 3302 ralunb 3303 elin3 3313 incom 3314 inass 3332 ssin 3344 ssddif 3356 unssdif 3357 difin 3359 invdif 3364 indif 3365 indi 3369 symdifxor 3388 disj3 3461 eldifpr 3603 rexsns 3615 reusn 3647 prss 3729 tpss 3738 eluni2 3793 elunirab 3802 uniun 3808 uni0b 3814 unissb 3819 elintrab 3836 ssintrab 3847 intun 3855 intpr 3856 iuncom 3872 iuncom4 3873 iunab 3912 ssiinf 3915 iinab 3927 iunin2 3929 iunun 3944 iunxun 3945 iunxiun 3947 sspwuni 3950 iinpw 3956 cbvdisj 3969 brun 4033 brin 4034 brdif 4035 dftr2 4082 inuni 4134 repizf2lem 4140 unidif0 4146 ssext 4199 pweqb 4201 otth2 4219 opelopabsbALT 4237 eqopab2b 4257 pwin 4260 unisuc 4391 elpwpwel 4453 sucexb 4474 elomssom 4582 xpiundi 4662 xpiundir 4663 poinxp 4673 soinxp 4674 seinxp 4675 inopab 4736 difopab 4737 raliunxp 4745 rexiunxp 4746 iunxpf 4752 cnvco 4789 dmiun 4813 dmuni 4814 dm0rn0 4821 brres 4890 dmres 4905 cnvsym 4987 asymref 4989 codir 4992 qfto 4993 cnvopab 5005 cnvdif 5010 rniun 5014 dminss 5018 imainss 5019 cnvcnvsn 5080 resco 5108 imaco 5109 rnco 5110 coiun 5113 coass 5122 ressn 5144 cnviinm 5145 xpcom 5150 funcnv 5249 funcnv3 5250 fncnv 5254 fun11 5255 fnres 5304 dfmpt3 5310 fnopabg 5311 fintm 5373 fin 5374 fores 5419 dff1o3 5438 fun11iun 5453 f11o 5465 f1ompt 5636 fsn 5657 imaiun 5728 isores2 5781 eqoprab2b 5900 opabex3d 6089 opabex3 6090 dfopab2 6157 dfoprab3s 6158 fmpox 6168 tpostpos 6232 dfsmo2 6255 qsid 6566 mapval2 6644 mapsncnv 6661 elixp2 6668 ixpin 6689 xpassen 6796 diffitest 6853 pw1dc0el 6877 supmoti 6958 eqinfti 6985 distrnqg 7328 ltbtwnnq 7357 distrnq0 7400 nqprrnd 7484 ltresr 7780 elznn0nn 9205 xrnemnf 9713 xrnepnf 9714 elioomnf 9904 elxrge0 9914 elfzuzb 9954 fzass4 9997 elfz2nn0 10047 elfzo2 10085 elfzo3 10098 lbfzo0 10116 fzind2 10174 dfrp2 10199 rexfiuz 10931 fisumcom2 11379 prodmodc 11519 fprodcom2fi 11567 infssuzex 11882 infpn2 12389 isbasis2g 12693 tgval2 12701 ntreq0 12782 txuni2 12906 isms2 13104 bdceq 13734 |
Copyright terms: Public domain | W3C validator |