| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpbidi | GIF version | ||
| Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| mpbidi.min | ⊢ (𝜃 → (𝜑 → 𝜓)) | 
| mpbidi.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| mpbidi | ⊢ (𝜃 → (𝜑 → 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpbidi.min | . 2 ⊢ (𝜃 → (𝜑 → 𝜓)) | |
| 2 | mpbidi.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| 4 | 1, 3 | sylcom 28 | 1 ⊢ (𝜃 → (𝜑 → 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: tpid3g 3737 ralxfr2d 4499 rexxfr2d 4500 ovmpt4g 6045 ovi3 6060 bj-inf2vnlem1 15616 | 
| Copyright terms: Public domain | W3C validator |