Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbidi | GIF version |
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
mpbidi.min | ⊢ (𝜃 → (𝜑 → 𝜓)) |
mpbidi.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbidi | ⊢ (𝜃 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbidi.min | . 2 ⊢ (𝜃 → (𝜑 → 𝜓)) | |
2 | mpbidi.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | sylcom 28 | 1 ⊢ (𝜃 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: tpid3g 3691 ralxfr2d 4442 rexxfr2d 4443 ovmpt4g 5964 ovi3 5978 bj-inf2vnlem1 13852 |
Copyright terms: Public domain | W3C validator |