ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylcom GIF version

Theorem sylcom 28
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.)
Hypotheses
Ref Expression
sylcom.1 (𝜑 → (𝜓𝜒))
sylcom.2 (𝜓 → (𝜒𝜃))
Assertion
Ref Expression
sylcom (𝜑 → (𝜓𝜃))

Proof of Theorem sylcom
StepHypRef Expression
1 sylcom.1 . 2 (𝜑 → (𝜓𝜒))
2 sylcom.2 . . 3 (𝜓 → (𝜒𝜃))
32a2i 11 . 2 ((𝜓𝜒) → (𝜓𝜃))
41, 3syl 14 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl5com  29  syl6  33  syli  37  mpbidi  150  stdcn  837  con4biddc  847  jaddc  854  con1biddc  866  necon4addc  2406  necon4bddc  2407  necon4ddc  2408  necon1addc  2412  necon1bddc  2413  dmcosseq  4875  iss  4930  funopg  5222  snon0  6901  metrest  13146
  Copyright terms: Public domain W3C validator