ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylcom GIF version

Theorem sylcom 28
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.)
Hypotheses
Ref Expression
sylcom.1 (𝜑 → (𝜓𝜒))
sylcom.2 (𝜓 → (𝜒𝜃))
Assertion
Ref Expression
sylcom (𝜑 → (𝜓𝜃))

Proof of Theorem sylcom
StepHypRef Expression
1 sylcom.1 . 2 (𝜑 → (𝜓𝜒))
2 sylcom.2 . . 3 (𝜓 → (𝜒𝜃))
32a2i 11 . 2 ((𝜓𝜒) → (𝜓𝜃))
41, 3syl 14 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl5com  29  syl6  33  syli  37  mpbidi  151  stdcn  852  con4biddc  862  jaddc  869  con1biddc  881  necon4addc  2470  necon4bddc  2471  necon4ddc  2472  necon1addc  2476  necon1bddc  2477  dmcosseq  4992  iss  5047  funopg  5348  snon0  7090  metrest  15165
  Copyright terms: Public domain W3C validator