| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxfr2d | GIF version | ||
| Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) |
| Ref | Expression |
|---|---|
| ralxfr2d.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) |
| ralxfr2d.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) |
| ralxfr2d.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralxfr2d | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr2d.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) | |
| 2 | elisset 2814 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 𝑥 = 𝐴) |
| 4 | ralxfr2d.2 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) | |
| 5 | 4 | biimprd 158 | . . . . . . 7 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 6 | r19.23v 2640 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐶 (𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 7 | 5, 6 | sylibr 134 | . . . . . 6 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 8 | 7 | r19.21bi 2618 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 9 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 10 | 8, 9 | mpbidi 151 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
| 11 | 10 | exlimdv 1865 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
| 12 | 3, 11 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| 13 | 4 | biimpa 296 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| 14 | ralxfr2d.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 15 | 12, 13, 14 | ralxfrd 4552 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 |
| This theorem is referenced by: ralrn 5772 ralima 5878 cnrest2 14904 cnptoprest2 14908 |
| Copyright terms: Public domain | W3C validator |