Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem1 GIF version

Theorem bj-inf2vnlem1 14725
Description: Lemma for bj-inf2vn 14729. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem1 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem bj-inf2vnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 biimpr 130 . . . . 5 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴))
2 jaob 710 . . . . . 6 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) ↔ ((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)))
32biimpi 120 . . . . 5 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) → ((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)))
4 simpl 109 . . . . . 6 (((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)) → (𝑥 = ∅ → 𝑥𝐴))
5 eleq1 2240 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
64, 5mpbidi 151 . . . . 5 (((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)) → (𝑥 = ∅ → ∅ ∈ 𝐴))
71, 3, 63syl 17 . . . 4 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑥 = ∅ → ∅ ∈ 𝐴))
87alimi 1455 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥 = ∅ → ∅ ∈ 𝐴))
9 exim 1599 . . 3 (∀𝑥(𝑥 = ∅ → ∅ ∈ 𝐴) → (∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴))
10 0ex 4131 . . . . . 6 ∅ ∈ V
1110isseti 2746 . . . . 5 𝑥 𝑥 = ∅
12 pm2.27 40 . . . . 5 (∃𝑥 𝑥 = ∅ → ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∃𝑥∅ ∈ 𝐴))
1311, 12ax-mp 5 . . . 4 ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∃𝑥∅ ∈ 𝐴)
14 bj-ex 14517 . . . 4 (∃𝑥∅ ∈ 𝐴 → ∅ ∈ 𝐴)
1513, 14syl 14 . . 3 ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∅ ∈ 𝐴)
168, 9, 153syl 17 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∅ ∈ 𝐴)
173simprd 114 . . . . . 6 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) → (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
181, 17syl 14 . . . . 5 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
1918alimi 1455 . . . 4 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
20 eqid 2177 . . . . 5 suc 𝑧 = suc 𝑧
21 suceq 4403 . . . . . . 7 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
2221eqeq2d 2189 . . . . . 6 (𝑦 = 𝑧 → (suc 𝑧 = suc 𝑦 ↔ suc 𝑧 = suc 𝑧))
2322rspcev 2842 . . . . 5 ((𝑧𝐴 ∧ suc 𝑧 = suc 𝑧) → ∃𝑦𝐴 suc 𝑧 = suc 𝑦)
2420, 23mpan2 425 . . . 4 (𝑧𝐴 → ∃𝑦𝐴 suc 𝑧 = suc 𝑦)
25 vex 2741 . . . . . 6 𝑧 ∈ V
2625bj-sucex 14678 . . . . 5 suc 𝑧 ∈ V
27 eqeq1 2184 . . . . . . 7 (𝑥 = suc 𝑧 → (𝑥 = suc 𝑦 ↔ suc 𝑧 = suc 𝑦))
2827rexbidv 2478 . . . . . 6 (𝑥 = suc 𝑧 → (∃𝑦𝐴 𝑥 = suc 𝑦 ↔ ∃𝑦𝐴 suc 𝑧 = suc 𝑦))
29 eleq1 2240 . . . . . 6 (𝑥 = suc 𝑧 → (𝑥𝐴 ↔ suc 𝑧𝐴))
3028, 29imbi12d 234 . . . . 5 (𝑥 = suc 𝑧 → ((∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴) ↔ (∃𝑦𝐴 suc 𝑧 = suc 𝑦 → suc 𝑧𝐴)))
3126, 30spcv 2832 . . . 4 (∀𝑥(∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴) → (∃𝑦𝐴 suc 𝑧 = suc 𝑦 → suc 𝑧𝐴))
3219, 24, 31syl2im 38 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑧𝐴 → suc 𝑧𝐴))
3332ralrimiv 2549 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑧𝐴 suc 𝑧𝐴)
34 df-bj-ind 14682 . 2 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑧𝐴 suc 𝑧𝐴))
3516, 33, 34sylanbrc 417 1 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  wal 1351   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  c0 3423  suc csuc 4366  Ind wind 14681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4130  ax-pr 4210  ax-un 4434  ax-bd0 14568  ax-bdor 14571  ax-bdex 14574  ax-bdeq 14575  ax-bdel 14576  ax-bdsb 14577  ax-bdsep 14639
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-nul 3424  df-sn 3599  df-pr 3600  df-uni 3811  df-suc 4372  df-bdc 14596  df-bj-ind 14682
This theorem is referenced by:  bj-inf2vn  14729  bj-inf2vn2  14730
  Copyright terms: Public domain W3C validator