Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem1 GIF version

Theorem bj-inf2vnlem1 16105
Description: Lemma for bj-inf2vn 16109. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem1 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem bj-inf2vnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 biimpr 130 . . . . 5 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴))
2 jaob 712 . . . . . 6 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) ↔ ((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)))
32biimpi 120 . . . . 5 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) → ((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)))
4 simpl 109 . . . . . 6 (((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)) → (𝑥 = ∅ → 𝑥𝐴))
5 eleq1 2270 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
64, 5mpbidi 151 . . . . 5 (((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)) → (𝑥 = ∅ → ∅ ∈ 𝐴))
71, 3, 63syl 17 . . . 4 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑥 = ∅ → ∅ ∈ 𝐴))
87alimi 1479 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥 = ∅ → ∅ ∈ 𝐴))
9 exim 1623 . . 3 (∀𝑥(𝑥 = ∅ → ∅ ∈ 𝐴) → (∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴))
10 0ex 4187 . . . . . 6 ∅ ∈ V
1110isseti 2785 . . . . 5 𝑥 𝑥 = ∅
12 pm2.27 40 . . . . 5 (∃𝑥 𝑥 = ∅ → ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∃𝑥∅ ∈ 𝐴))
1311, 12ax-mp 5 . . . 4 ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∃𝑥∅ ∈ 𝐴)
14 bj-ex 15898 . . . 4 (∃𝑥∅ ∈ 𝐴 → ∅ ∈ 𝐴)
1513, 14syl 14 . . 3 ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∅ ∈ 𝐴)
168, 9, 153syl 17 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∅ ∈ 𝐴)
173simprd 114 . . . . . 6 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) → (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
181, 17syl 14 . . . . 5 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
1918alimi 1479 . . . 4 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
20 eqid 2207 . . . . 5 suc 𝑧 = suc 𝑧
21 suceq 4467 . . . . . . 7 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
2221eqeq2d 2219 . . . . . 6 (𝑦 = 𝑧 → (suc 𝑧 = suc 𝑦 ↔ suc 𝑧 = suc 𝑧))
2322rspcev 2884 . . . . 5 ((𝑧𝐴 ∧ suc 𝑧 = suc 𝑧) → ∃𝑦𝐴 suc 𝑧 = suc 𝑦)
2420, 23mpan2 425 . . . 4 (𝑧𝐴 → ∃𝑦𝐴 suc 𝑧 = suc 𝑦)
25 vex 2779 . . . . . 6 𝑧 ∈ V
2625bj-sucex 16058 . . . . 5 suc 𝑧 ∈ V
27 eqeq1 2214 . . . . . . 7 (𝑥 = suc 𝑧 → (𝑥 = suc 𝑦 ↔ suc 𝑧 = suc 𝑦))
2827rexbidv 2509 . . . . . 6 (𝑥 = suc 𝑧 → (∃𝑦𝐴 𝑥 = suc 𝑦 ↔ ∃𝑦𝐴 suc 𝑧 = suc 𝑦))
29 eleq1 2270 . . . . . 6 (𝑥 = suc 𝑧 → (𝑥𝐴 ↔ suc 𝑧𝐴))
3028, 29imbi12d 234 . . . . 5 (𝑥 = suc 𝑧 → ((∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴) ↔ (∃𝑦𝐴 suc 𝑧 = suc 𝑦 → suc 𝑧𝐴)))
3126, 30spcv 2874 . . . 4 (∀𝑥(∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴) → (∃𝑦𝐴 suc 𝑧 = suc 𝑦 → suc 𝑧𝐴))
3219, 24, 31syl2im 38 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑧𝐴 → suc 𝑧𝐴))
3332ralrimiv 2580 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑧𝐴 suc 𝑧𝐴)
34 df-bj-ind 16062 . 2 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑧𝐴 suc 𝑧𝐴))
3516, 33, 34sylanbrc 417 1 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  wal 1371   = wceq 1373  wex 1516  wcel 2178  wral 2486  wrex 2487  c0 3468  suc csuc 4430  Ind wind 16061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdor 15951  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-suc 4436  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by:  bj-inf2vn  16109  bj-inf2vn2  16110
  Copyright terms: Public domain W3C validator