| Step | Hyp | Ref
 | Expression | 
| 1 |   | biimpr 130 | 
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ((𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → 𝑥 ∈ 𝐴)) | 
| 2 |   | jaob 711 | 
. . . . . 6
⊢ (((𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → 𝑥 ∈ 𝐴) ↔ ((𝑥 = ∅ → 𝑥 ∈ 𝐴) ∧ (∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴))) | 
| 3 | 2 | biimpi 120 | 
. . . . 5
⊢ (((𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → 𝑥 ∈ 𝐴) → ((𝑥 = ∅ → 𝑥 ∈ 𝐴) ∧ (∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴))) | 
| 4 |   | simpl 109 | 
. . . . . 6
⊢ (((𝑥 = ∅ → 𝑥 ∈ 𝐴) ∧ (∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴)) → (𝑥 = ∅ → 𝑥 ∈ 𝐴)) | 
| 5 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) | 
| 6 | 4, 5 | mpbidi 151 | 
. . . . 5
⊢ (((𝑥 = ∅ → 𝑥 ∈ 𝐴) ∧ (∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴)) → (𝑥 = ∅ → ∅ ∈ 𝐴)) | 
| 7 | 1, 3, 6 | 3syl 17 | 
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (𝑥 = ∅ → ∅ ∈ 𝐴)) | 
| 8 | 7 | alimi 1469 | 
. . 3
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥 = ∅ → ∅ ∈ 𝐴)) | 
| 9 |   | exim 1613 | 
. . 3
⊢
(∀𝑥(𝑥 = ∅ → ∅ ∈
𝐴) → (∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴)) | 
| 10 |   | 0ex 4160 | 
. . . . . 6
⊢ ∅
∈ V | 
| 11 | 10 | isseti 2771 | 
. . . . 5
⊢
∃𝑥 𝑥 = ∅ | 
| 12 |   | pm2.27 40 | 
. . . . 5
⊢
(∃𝑥 𝑥 = ∅ → ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∃𝑥∅ ∈ 𝐴)) | 
| 13 | 11, 12 | ax-mp 5 | 
. . . 4
⊢
((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∃𝑥∅ ∈ 𝐴) | 
| 14 |   | bj-ex 15408 | 
. . . 4
⊢
(∃𝑥∅
∈ 𝐴 → ∅
∈ 𝐴) | 
| 15 | 13, 14 | syl 14 | 
. . 3
⊢
((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∅ ∈ 𝐴) | 
| 16 | 8, 9, 15 | 3syl 17 | 
. 2
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∅ ∈ 𝐴) | 
| 17 | 3 | simprd 114 | 
. . . . . 6
⊢ (((𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴)) | 
| 18 | 1, 17 | syl 14 | 
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴)) | 
| 19 | 18 | alimi 1469 | 
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥(∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴)) | 
| 20 |   | eqid 2196 | 
. . . . 5
⊢ suc 𝑧 = suc 𝑧 | 
| 21 |   | suceq 4437 | 
. . . . . . 7
⊢ (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧) | 
| 22 | 21 | eqeq2d 2208 | 
. . . . . 6
⊢ (𝑦 = 𝑧 → (suc 𝑧 = suc 𝑦 ↔ suc 𝑧 = suc 𝑧)) | 
| 23 | 22 | rspcev 2868 | 
. . . . 5
⊢ ((𝑧 ∈ 𝐴 ∧ suc 𝑧 = suc 𝑧) → ∃𝑦 ∈ 𝐴 suc 𝑧 = suc 𝑦) | 
| 24 | 20, 23 | mpan2 425 | 
. . . 4
⊢ (𝑧 ∈ 𝐴 → ∃𝑦 ∈ 𝐴 suc 𝑧 = suc 𝑦) | 
| 25 |   | vex 2766 | 
. . . . . 6
⊢ 𝑧 ∈ V | 
| 26 | 25 | bj-sucex 15569 | 
. . . . 5
⊢ suc 𝑧 ∈ V | 
| 27 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑥 = suc 𝑧 → (𝑥 = suc 𝑦 ↔ suc 𝑧 = suc 𝑦)) | 
| 28 | 27 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑥 = suc 𝑧 → (∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 ↔ ∃𝑦 ∈ 𝐴 suc 𝑧 = suc 𝑦)) | 
| 29 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑥 = suc 𝑧 → (𝑥 ∈ 𝐴 ↔ suc 𝑧 ∈ 𝐴)) | 
| 30 | 28, 29 | imbi12d 234 | 
. . . . 5
⊢ (𝑥 = suc 𝑧 → ((∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴) ↔ (∃𝑦 ∈ 𝐴 suc 𝑧 = suc 𝑦 → suc 𝑧 ∈ 𝐴))) | 
| 31 | 26, 30 | spcv 2858 | 
. . . 4
⊢
(∀𝑥(∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦 → 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 suc 𝑧 = suc 𝑦 → suc 𝑧 ∈ 𝐴)) | 
| 32 | 19, 24, 31 | syl2im 38 | 
. . 3
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (𝑧 ∈ 𝐴 → suc 𝑧 ∈ 𝐴)) | 
| 33 | 32 | ralrimiv 2569 | 
. 2
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑧 ∈ 𝐴 suc 𝑧 ∈ 𝐴) | 
| 34 |   | df-bj-ind 15573 | 
. 2
⊢ (Ind
𝐴 ↔ (∅ ∈
𝐴 ∧ ∀𝑧 ∈ 𝐴 suc 𝑧 ∈ 𝐴)) | 
| 35 | 16, 33, 34 | sylanbrc 417 | 
1
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → Ind 𝐴) |