Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem1 GIF version

Theorem bj-inf2vnlem1 13339
Description: Lemma for bj-inf2vn 13343. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem1 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem bj-inf2vnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bi2 129 . . . . 5 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴))
2 jaob 700 . . . . . 6 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) ↔ ((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)))
32biimpi 119 . . . . 5 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) → ((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)))
4 simpl 108 . . . . . 6 (((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)) → (𝑥 = ∅ → 𝑥𝐴))
5 eleq1 2203 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
64, 5mpbidi 150 . . . . 5 (((𝑥 = ∅ → 𝑥𝐴) ∧ (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴)) → (𝑥 = ∅ → ∅ ∈ 𝐴))
71, 3, 63syl 17 . . . 4 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑥 = ∅ → ∅ ∈ 𝐴))
87alimi 1432 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥 = ∅ → ∅ ∈ 𝐴))
9 exim 1579 . . 3 (∀𝑥(𝑥 = ∅ → ∅ ∈ 𝐴) → (∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴))
10 0ex 4063 . . . . . 6 ∅ ∈ V
1110isseti 2697 . . . . 5 𝑥 𝑥 = ∅
12 pm2.27 40 . . . . 5 (∃𝑥 𝑥 = ∅ → ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∃𝑥∅ ∈ 𝐴))
1311, 12ax-mp 5 . . . 4 ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∃𝑥∅ ∈ 𝐴)
14 bj-ex 13140 . . . 4 (∃𝑥∅ ∈ 𝐴 → ∅ ∈ 𝐴)
1513, 14syl 14 . . 3 ((∃𝑥 𝑥 = ∅ → ∃𝑥∅ ∈ 𝐴) → ∅ ∈ 𝐴)
168, 9, 153syl 17 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∅ ∈ 𝐴)
173simprd 113 . . . . . 6 (((𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → 𝑥𝐴) → (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
181, 17syl 14 . . . . 5 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
1918alimi 1432 . . . 4 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴))
20 eqid 2140 . . . . 5 suc 𝑧 = suc 𝑧
21 suceq 4332 . . . . . . 7 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
2221eqeq2d 2152 . . . . . 6 (𝑦 = 𝑧 → (suc 𝑧 = suc 𝑦 ↔ suc 𝑧 = suc 𝑧))
2322rspcev 2793 . . . . 5 ((𝑧𝐴 ∧ suc 𝑧 = suc 𝑧) → ∃𝑦𝐴 suc 𝑧 = suc 𝑦)
2420, 23mpan2 422 . . . 4 (𝑧𝐴 → ∃𝑦𝐴 suc 𝑧 = suc 𝑦)
25 vex 2692 . . . . . 6 𝑧 ∈ V
2625bj-sucex 13292 . . . . 5 suc 𝑧 ∈ V
27 eqeq1 2147 . . . . . . 7 (𝑥 = suc 𝑧 → (𝑥 = suc 𝑦 ↔ suc 𝑧 = suc 𝑦))
2827rexbidv 2439 . . . . . 6 (𝑥 = suc 𝑧 → (∃𝑦𝐴 𝑥 = suc 𝑦 ↔ ∃𝑦𝐴 suc 𝑧 = suc 𝑦))
29 eleq1 2203 . . . . . 6 (𝑥 = suc 𝑧 → (𝑥𝐴 ↔ suc 𝑧𝐴))
3028, 29imbi12d 233 . . . . 5 (𝑥 = suc 𝑧 → ((∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴) ↔ (∃𝑦𝐴 suc 𝑧 = suc 𝑦 → suc 𝑧𝐴)))
3126, 30spcv 2783 . . . 4 (∀𝑥(∃𝑦𝐴 𝑥 = suc 𝑦𝑥𝐴) → (∃𝑦𝐴 suc 𝑧 = suc 𝑦 → suc 𝑧𝐴))
3219, 24, 31syl2im 38 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑧𝐴 → suc 𝑧𝐴))
3332ralrimiv 2507 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑧𝐴 suc 𝑧𝐴)
34 df-bj-ind 13296 . 2 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑧𝐴 suc 𝑧𝐴))
3516, 33, 34sylanbrc 414 1 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wal 1330   = wceq 1332  wex 1469  wcel 1481  wral 2417  wrex 2418  c0 3368  suc csuc 4295  Ind wind 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-nul 4062  ax-pr 4139  ax-un 4363  ax-bd0 13182  ax-bdor 13185  ax-bdex 13188  ax-bdeq 13189  ax-bdel 13190  ax-bdsb 13191  ax-bdsep 13253
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-nul 3369  df-sn 3538  df-pr 3539  df-uni 3745  df-suc 4301  df-bdc 13210  df-bj-ind 13296
This theorem is referenced by:  bj-inf2vn  13343  bj-inf2vn2  13344
  Copyright terms: Public domain W3C validator