![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpid3g | GIF version |
Description: Closed theorem form of tpid3 3578. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
tpid3g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2647 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
2 | 3mix3 1117 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)) | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴))) |
4 | abid 2083 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)} ↔ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)) | |
5 | 3, 4 | syl6ibr 161 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)})) |
6 | dftp2 3511 | . . . . . 6 ⊢ {𝐶, 𝐷, 𝐴} = {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)} | |
7 | 6 | eleq2i 2161 | . . . . 5 ⊢ (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)}) |
8 | 5, 7 | syl6ibr 161 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ {𝐶, 𝐷, 𝐴})) |
9 | eleq1 2157 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷, 𝐴})) | |
10 | 8, 9 | mpbidi 150 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝐴 ∈ {𝐶, 𝐷, 𝐴})) |
11 | 10 | exlimdv 1754 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ {𝐶, 𝐷, 𝐴})) |
12 | 1, 11 | mpd 13 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 926 = wceq 1296 ∃wex 1433 ∈ wcel 1445 {cab 2081 {ctp 3468 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-tp 3474 |
This theorem is referenced by: rngmulrg 11777 srngmulrd 11784 lmodscad 11795 ipsmulrd 11803 ipsipd 11806 topgrptsetd 11813 |
Copyright terms: Public domain | W3C validator |