ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid3g GIF version

Theorem tpid3g 3704
Description: Closed theorem form of tpid3 3705. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tpid3g (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})

Proof of Theorem tpid3g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 2749 . 2 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
2 3mix3 1168 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
32a1i 9 . . . . . 6 (𝐴𝐵 → (𝑥 = 𝐴 → (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)))
4 abid 2163 . . . . . 6 (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)} ↔ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
53, 4syl6ibr 162 . . . . 5 (𝐴𝐵 → (𝑥 = 𝐴𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}))
6 dftp2 3638 . . . . . 6 {𝐶, 𝐷, 𝐴} = {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}
76eleq2i 2242 . . . . 5 (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)})
85, 7syl6ibr 162 . . . 4 (𝐴𝐵 → (𝑥 = 𝐴𝑥 ∈ {𝐶, 𝐷, 𝐴}))
9 eleq1 2238 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷, 𝐴}))
108, 9mpbidi 151 . . 3 (𝐴𝐵 → (𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
1110exlimdv 1817 . 2 (𝐴𝐵 → (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
121, 11mpd 13 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 977   = wceq 1353  wex 1490  wcel 2146  {cab 2161  {ctp 3591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3or 979  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-tp 3597
This theorem is referenced by:  rngmulrg  12549  srngmulrd  12556  lmodscad  12570  ipsmulrd  12578  ipsipd  12581  topgrptsetd  12595
  Copyright terms: Public domain W3C validator