ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid3g GIF version

Theorem tpid3g 3709
Description: Closed theorem form of tpid3 3710. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tpid3g (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})

Proof of Theorem tpid3g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 2753 . 2 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
2 3mix3 1168 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
32a1i 9 . . . . . 6 (𝐴𝐵 → (𝑥 = 𝐴 → (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)))
4 abid 2165 . . . . . 6 (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)} ↔ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
53, 4imbitrrdi 162 . . . . 5 (𝐴𝐵 → (𝑥 = 𝐴𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}))
6 dftp2 3643 . . . . . 6 {𝐶, 𝐷, 𝐴} = {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}
76eleq2i 2244 . . . . 5 (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)})
85, 7imbitrrdi 162 . . . 4 (𝐴𝐵 → (𝑥 = 𝐴𝑥 ∈ {𝐶, 𝐷, 𝐴}))
9 eleq1 2240 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷, 𝐴}))
108, 9mpbidi 151 . . 3 (𝐴𝐵 → (𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
1110exlimdv 1819 . 2 (𝐴𝐵 → (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
121, 11mpd 13 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 977   = wceq 1353  wex 1492  wcel 2148  {cab 2163  {ctp 3596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3or 979  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-tp 3602
This theorem is referenced by:  rngmulrg  12598  srngmulrd  12609  lmodscad  12627  ipsmulrd  12639  ipsipd  12642  topgrptsetd  12659
  Copyright terms: Public domain W3C validator