Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpid3g | GIF version |
Description: Closed theorem form of tpid3 3705. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
tpid3g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2749 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
2 | 3mix3 1168 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)) | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴))) |
4 | abid 2163 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)} ↔ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)) | |
5 | 3, 4 | syl6ibr 162 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)})) |
6 | dftp2 3638 | . . . . . 6 ⊢ {𝐶, 𝐷, 𝐴} = {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)} | |
7 | 6 | eleq2i 2242 | . . . . 5 ⊢ (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)}) |
8 | 5, 7 | syl6ibr 162 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ {𝐶, 𝐷, 𝐴})) |
9 | eleq1 2238 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷, 𝐴})) | |
10 | 8, 9 | mpbidi 151 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝐴 ∈ {𝐶, 𝐷, 𝐴})) |
11 | 10 | exlimdv 1817 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ {𝐶, 𝐷, 𝐴})) |
12 | 1, 11 | mpd 13 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 977 = wceq 1353 ∃wex 1490 ∈ wcel 2146 {cab 2161 {ctp 3591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-tp 3597 |
This theorem is referenced by: rngmulrg 12549 srngmulrd 12556 lmodscad 12570 ipsmulrd 12578 ipsipd 12581 topgrptsetd 12595 |
Copyright terms: Public domain | W3C validator |