| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ovmpt4g | GIF version | ||
| Description: Value of a function given by the maps-to notation. (This is the operation analog of fvmpt2 5645.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| ovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | 
| Ref | Expression | 
|---|---|
| ovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elisset 2777 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐶) | |
| 2 | moeq 2939 | . . . . . . 7 ⊢ ∃*𝑧 𝑧 = 𝐶 | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧 𝑧 = 𝐶) | 
| 4 | ovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | df-mpo 5927 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 6 | 4, 5 | eqtri 2217 | . . . . . 6 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | 
| 7 | 3, 6 | ovidi 6041 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝑧)) | 
| 8 | eqeq2 2206 | . . . . 5 ⊢ (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = 𝑧 ↔ (𝑥𝐹𝑦) = 𝐶)) | |
| 9 | 7, 8 | mpbidi 151 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶)) | 
| 10 | 9 | exlimdv 1833 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∃𝑧 𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶)) | 
| 11 | 1, 10 | syl5 32 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐶 ∈ 𝑉 → (𝑥𝐹𝑦) = 𝐶)) | 
| 12 | 11 | 3impia 1202 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∃*wmo 2046 ∈ wcel 2167 (class class class)co 5922 {coprab 5923 ∈ cmpo 5924 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 | 
| This theorem is referenced by: ovmpos 6046 ov2gf 6047 ovmpodxf 6048 ovmpodf 6054 ofmres 6193 fnmpoovd 6273 mapxpen 6909 cnmpt21 14527 cnmpt2t 14529 cnmptcom 14534 | 
| Copyright terms: Public domain | W3C validator |