ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt4g GIF version

Theorem ovmpt4g 6068
Description: Value of a function given by the maps-to notation. (This is the operation analog of fvmpt2 5663.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
ovmpt4g.3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
ovmpt4g ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt4g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elisset 2786 . . 3 (𝐶𝑉 → ∃𝑧 𝑧 = 𝐶)
2 moeq 2948 . . . . . . 7 ∃*𝑧 𝑧 = 𝐶
32a1i 9 . . . . . 6 ((𝑥𝐴𝑦𝐵) → ∃*𝑧 𝑧 = 𝐶)
4 ovmpt4g.3 . . . . . . 7 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
5 df-mpo 5949 . . . . . . 7 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
64, 5eqtri 2226 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
73, 6ovidi 6064 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝑧))
8 eqeq2 2215 . . . . 5 (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = 𝑧 ↔ (𝑥𝐹𝑦) = 𝐶))
97, 8mpbidi 151 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶))
109exlimdv 1842 . . 3 ((𝑥𝐴𝑦𝐵) → (∃𝑧 𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶))
111, 10syl5 32 . 2 ((𝑥𝐴𝑦𝐵) → (𝐶𝑉 → (𝑥𝐹𝑦) = 𝐶))
12113impia 1203 1 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1515  ∃*wmo 2055  wcel 2176  (class class class)co 5944  {coprab 5945  cmpo 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949
This theorem is referenced by:  ovmpos  6069  ov2gf  6070  ovmpodxf  6071  ovmpodf  6077  ofmres  6221  fnmpoovd  6301  mapxpen  6945  cnmpt21  14763  cnmpt2t  14765  cnmptcom  14770
  Copyright terms: Public domain W3C validator