ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt4g GIF version

Theorem ovmpt4g 5999
Description: Value of a function given by the maps-to notation. (This is the operation analog of fvmpt2 5601.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
ovmpt4g.3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
ovmpt4g ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt4g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elisset 2753 . . 3 (𝐶𝑉 → ∃𝑧 𝑧 = 𝐶)
2 moeq 2914 . . . . . . 7 ∃*𝑧 𝑧 = 𝐶
32a1i 9 . . . . . 6 ((𝑥𝐴𝑦𝐵) → ∃*𝑧 𝑧 = 𝐶)
4 ovmpt4g.3 . . . . . . 7 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
5 df-mpo 5882 . . . . . . 7 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
64, 5eqtri 2198 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
73, 6ovidi 5995 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝑧))
8 eqeq2 2187 . . . . 5 (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = 𝑧 ↔ (𝑥𝐹𝑦) = 𝐶))
97, 8mpbidi 151 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶))
109exlimdv 1819 . . 3 ((𝑥𝐴𝑦𝐵) → (∃𝑧 𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶))
111, 10syl5 32 . 2 ((𝑥𝐴𝑦𝐵) → (𝐶𝑉 → (𝑥𝐹𝑦) = 𝐶))
12113impia 1200 1 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wex 1492  ∃*wmo 2027  wcel 2148  (class class class)co 5877  {coprab 5878  cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882
This theorem is referenced by:  ovmpos  6000  ov2gf  6001  ovmpodxf  6002  ovmpodf  6008  ofmres  6139  fnmpoovd  6218  mapxpen  6850  cnmpt21  13830  cnmpt2t  13832  cnmptcom  13837
  Copyright terms: Public domain W3C validator